Advertisement

Molecular Biology Reports

, Volume 14, Issue 1, pp 1–9 | Cite as

Prosomes, subcomplexes of untranslated mRNP

  • K. Scherrer
Minireview

Abstract

PROSOMES are a novel class of small RNP particles of uniform morphology, but of variable RNA (pRNA) and protein composition (about 650 000 MW; 12 nm diameter in the EM). They were discovered as subcomplexes of free mRNP, tightly attached to inactive mRNA in the cytoplasm. The pRNAs hybridize stably to mRNA. Prosomes associate in vitro to mRNA and inhibit cell free protein synthesis inducing an mRNA structure unable to interact with ribosomes. Many types of prosomes were observed. The individual particle is made up by a variable combination of about 20 characteristic proteins and one or several pRNA. Some prosomal proteins are glycosylated, phosphorylated and, possibly, ADP-ribosylated and are highly conserved in evolution whilst others vary with the species and the mRNA population they are associated to. A protease activity was found associated to prosomes.

The function(s) of the prosomes is(are) still unknown. The differential inhibition of in vitro protein synthesis points to a capacity to recognize mRNA and to keep it in an inactive state. The observation with the aid of monoclonal antibodies (pMABs) that prosomes and thus mRNP are attached to the intermediate filaments (IF) raises the question if one of the functions of the IF might be in the topological distribution of mRNA within the cell. Similar to the cytokeratin fibers, the prosome networks bridge neighboring cells at specific positions. — The nucleus also contains some prosomal antigens, located on chromosomes and on the nuclear matrix. Their presence and distribution in the cell compartments varies with the cell type and the prosomal antigen probed.

Oocytes contain large amounts of prosomes. In embryonic development, the synthesis of individual prosomal proteins starts progressively after the blastula stage and resumes fully in gastrulation only; cleavage and blastula stage prosomes are thus of maternal origin. The nucleo-cytoplasmic distribution of prosomal antigens changes in embryos, with the stage of development and type of differentiation. In human tissues specific patterns of prosomal antigens were found in function of cell type and differentiation.

In view of these data, the hypothesis may be formulated that prosomes are a population of mRNA-linked RNP which includes particles of varying individual composition and hence specificity. Attached to IF sub-networks, specific types of prosomes might accompany families of mRNA in function of the physiological state and the specialisation of given differentiated cell types. The cell-type specific organisation of the IF networks might be related to the messenger RNA complement of a given cell, and to its status of gene expression. The prosomes might thus have a function in controlling the transport, distribution and control of activity of specific mRNAs in the cell.

Key words

prosomes messenger RNP intermediate filaments heat shock complex multicatalytical protease (MCP) protein synthesis gene expression differentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spohr G, Granboulan N, Morel C & Scherrer K (1970) Europ J Biochem 17: 296–318Google Scholar
  2. 2.
    Schmid H-P, Akhayat O, Martins de S C, Puvion F, Koehler K & Scherrer K (1984) EMBO J 3: 29–34Google Scholar
  3. 3.
    Martins de S C, Grossi de S M-F, Akhayat O, Broders F, Scherrer K, Horsch A & Schmid H-P (1986) J Mol Biol 187: 479–493Google Scholar
  4. 4.
    Vincent A, Akhayut O, Goldenberg S & Scherrer K (1983) EMBO J 2, 1869–1876Google Scholar
  5. 5.
    Pal JK, Gounon P, Grossi de SA M-F & Scherrer K (1988) J Cell Sci 90: 555–567Google Scholar
  6. 6.
    Bey F (1988) Diploma Thesis, Université Paris VIGoogle Scholar
  7. 7.
    Engelhardt P, Plagens U, Zbarsky JB & Filatova LS (1982) Proc Natl Acad Sci 79: 6937–6940Google Scholar
  8. 8.
    Harris JR & Naeem I (1981) Biochem Biophys Acta 670: 285–290 Smulson M (1974) Exptl Cell Res 87: 253–258 Shelton E, Kuff EL, Maxwell ES & Harrington JT (1970) J Cell Biol 45: 1–8Google Scholar
  9. 9.
    Harmon FR, Spohn WH, Domae N, Chul S & Busch H (1983) Cell Biol Int Rep 7: 333–343Google Scholar
  10. 10.
    Narayan KS & Rounds DE (1973) Nature New Biol 243: 146–150Google Scholar
  11. 11.
    Domae N, Harmon FR, Busch RK, Spohn W, Subrahmanyam CS & Busch H (1982) Life Sci 30: 469–477Google Scholar
  12. 12.
    Brunel C, Sri Vidada J, Lelay MN, Jeanteur P and Liautard J-P (1980) Nucl Acids Res 9: 815–830Google Scholar
  13. 13.
    Kleinschmidt JA, Hugle BJ, Grund C and Franke WW (1983) Eur J Cell Biol 32: 143–156Google Scholar
  14. 14.
    Rose IA, Warms JVB & Hershko A (1979) J Biol Chem 254, 8135–8138 De Martino GN & Goldberg AL (1979) J Biol Chem 254: 3712–3715 Tanaka K II K, Ichihara A, Waxman L & Goldberg A (1986) J Biol Chem 261: 15197–15203Google Scholar
  15. 15.
    Dahlmann B, Kuehn L, Rutschmann M & Reinauer H (1985) Biochem J 228: 161–170Google Scholar
  16. 16.
    Rechsteiner M (1987) Ann Rev Cell Biol 3, 1–30Google Scholar
  17. 17.
    Arrigo A-P, Tanaka K, Goldberg AL & Welch WJ (1988) Nature 331: 192–194Google Scholar
  18. 18.
    Falkenburg PE, Haass C, Kloetzel PE, Niedel B, Kopp F, Kuehn L & Dahlmann B (1988) Nature 331: 190–194Google Scholar
  19. 19.
    Castano JG, Ornberg R, Koster JG, Tobian JA & Zasloff M (1986) Cell 46: 377–387Google Scholar
  20. 20.
    Akhayat O, Infante AA, Infante D, Martins de SA C, Grossi de SA M-F & Scherrer K (1987a) Eur J Biochem 170: 23–33Google Scholar
  21. 21.
    Grossi de Sa M-F, Martins de Sa C, Harper F, Coux O, Akhayat O, Pal JK, Florentin Y & Scherrer K (1988a) J Cell Sci 89: 151–165Google Scholar
  22. 22.
    Thomassin H, Martins de SA C, Scherrer K, Maniez C & Mandel P (1988) Mol Biol Rep 13: 35–44Google Scholar
  23. 23.
    Tomek W, Adam G & Schmid H-P (1988) FEBS Lett 239: 155–158Google Scholar
  24. 24.
    Dineva B, Tomek W, Koehler K & Schmid H-P (1989) Mol Biol Rep 13: 207–211Google Scholar
  25. 25.
    Horsch A (1988) Doctoral Thesis, University StuttgartGoogle Scholar
  26. 26.
    Scherrer K (1980) Cascade Regulation: a model for integrative control of gene expression In eukaryotic cells In: Kolodny (Ed) Eukaryotic Gene Regulation, Vol. I (pp 57–129) CRC PressGoogle Scholar
  27. 27.
    Horsch A, Martins de Sa C, Dineva B, Spindler E & Schmid P (1989) FEBS Letters 246: 131–136Google Scholar
  28. 28.
    Civelli O, Vincent A, Maundrell K, Buri J-F & Scherrer K (1980) Eur J Biochem 107: 577–585Google Scholar
  29. 29.
    Tanaka K, Yoshimura T, Ichihara A, Ikai A, Nishigai M, Morimoto Y, Sato M, Tanaka N, Katsube Y, Kameyama K & Takagi T (1988) J Mol Biol 203: 985–996Google Scholar
  30. 30.
    Arrigo A-P, Darlix J-L, Khandjian EW, Simon M & Spahr P-F (1985) EMBO J 4: 399–406Google Scholar
  31. 31.
    Kloetzel P-F, Falkenburg P-E, Hossl P & Glatzer KH (1987) Exptl Cell Res 170: 204–213 Schuldt C & Kloetzel P-M (1985) Dev Biol 110: 65–74Google Scholar
  32. 32.
    Matthews W, Tanaka K, Driscoll J, Ichihara A & Goldberg AL (1989) Proc Natl Acad Sci USA 86: 2597–2601 Eytan E, Ganoth D, Armon T & Hershko A (1989) Proc Natl Acad Sci US 86, 7751–7755Google Scholar
  33. 33.
    Rive H, AJ (1988) Arch Biochem Biophys 268: 1–8Google Scholar
  34. 34.
    Orenstein NS, Dvorak HF, Blanchard MH and Young M (1978) Proc Acad Sci USA 75: 5497–5500Google Scholar
  35. 35.
    Martins de SA C, Rollet E, Grossi de SA M-F, Tanguay RM, Best-Belpomme M & Scherrer K (1988) Mol Cell Biol 9: 2672–2681Google Scholar
  36. 36.
    Kremp A, Schliephacke M, Kull U & Schmid H-P (1986) Exp Cell Res 166: 553–557Google Scholar
  37. 37.
    Grossi de SA M-F, Martins de SA C, Harper F, Olink-Coux M, Huesca M & Scherrer K (1988b) J Cell Biol 107: 1517–1530Google Scholar
  38. 38.
    Arrigo A-P, Simon MM, Darlix J-L & Spahr P-F (1987) J Mol Evol 25, 141–150Google Scholar
  39. 39.
    Traub P (1985) In: Intermediate Filaments — A review (p 178) Springer-Verlag, HeidelbergGoogle Scholar
  40. 40.
    Osborn M, Geisler N, Shaw G, Sharp G & Weber K (1982) Intermediate Filaments. Cold Spring Harbor Symp on Quant Biol XLVI, 413–429Google Scholar
  41. 41.
    Osborn M & Weber K (1977) Exp Cell Res 106: 339–349Google Scholar
  42. 42.
    Scherrer K, Olink-Coux M, Grossi de SA M-F, Pal JK, Martins de SA C & Buri J-F (1988) In: Rousset B (Ed) Structure and Function of the Cytoskeleton Vol. 171 (pp 349–362) Inserm and J Libbey, Paris, LondonGoogle Scholar
  43. 43.
    Gautier J, Pal JK, Grossi de SA M-F, Beetschen J-C & Scherrer K (1988) J Cell Sci 90: 543–553Google Scholar
  44. 44.
    Akhayat O, Grossi de Sa M-F & Infante AA (1987b) Proc Natl Acad Sci USA 84: 1595–1599Google Scholar
  45. 45.
    Grainger JL & Winkler MM (1987) Mol Cell Biol 7: 3947–3954Google Scholar
  46. 46.
    Lawrence JB & Singer RH (1986) Cell 45: 407–415Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • K. Scherrer
    • 1
  1. 1.Institut Jacques MonodParis Cedex 05France

Personalised recommendations