Skip to main content
Log in

Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum

Archives of Microbiology Aims and scope Submit manuscript

Abstract

During growth of Acetobacterium woodii on fructose, glucose or lactate in a medium containing less than 0.04% bicarbonate, molecular hydrogen was evolved up to 0.1 mol per mol of substrate. Under an H2-atmosphere growth of A. woodii with organic substrates was completely inhibited whereas under an H2/CO2-atmosphere rapid growth occurred. Under these conditions H2+CO2 and the organic substrate were utilized simultaneously indicating that A. woodii was able to grow mixotrophically.

Clostridium aceticum differed from A. woodii in that H2 was only evolved in the stationary phase, that the inhibition by H2 was observed at pH 8.5 but not at pH 7.5, anf that in the presence of fructose and H2+CO2 only fructose was utilized.

The hydrogenase activity of fructose-grown cells of C. aceticum amounted to only 12% of that of H2+CO2-grown cells. With A. woodii a corresponding decrease of the activity of this enzyme was not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Andreesen JR, Gottschalk G, Schlegel HG (1970) Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol 72:154–174

    Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon-dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    Google Scholar 

  • Bernt E, Bergmeyer HU (1974) d-Fructose. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1347–1352

    Google Scholar 

  • Brandford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Google Scholar 

  • Bryant MP, Tzeng SF, Robinson IM, Joyner AE Jr (1971) Nutrient requirements of methanogenic bacteria. Adv Chem Ser 105:23–40

    Google Scholar 

  • Chung KT (1976) Inhibitory effects of H2 on growth of Clostridium cellobioparum. Appl Environ Microbiol 31:342–348

    Google Scholar 

  • Dijkhuizen L, Knight M, Harder W (1978) Metabolic regulation in Pseudomonas oxalaticus OX1; autotrophic and heterotrophic growth on mixed substrates. Arch Microbiol 116:77–83

    Google Scholar 

  • Dorn M, Andreesen JR, Gottschalk G (1978) Fumarate reductase of Clostridium formicoaceticum. Arch Microbiol 119:7–11

    Google Scholar 

  • Fontaine F, Peterson WH, McCoy E, Johnson MJ, Ritter GJ (1942) A new type of glucose fermentation by Clostridium thermoaceticum, n. sp. J Bacteriol 43:701–715

    Google Scholar 

  • Gottschalk G (1965) Die Verwertung organischer Substrate durch Hydrogenomonas in Gegenwart von molekularem Wasserstoff. Biochem Z 341:260–270

    Google Scholar 

  • Gottschalk G, Andreesen JR (1979) Energy metabolism in anaerobes. In: Quayle JR (ed) Review of biochemistry microbial biochemistry. University Park Press, Baltimore, pp 85–115

    Google Scholar 

  • Gutmann I, Wahlefeld AW (1974) l-(+)-Lactate. Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1510–1514

    Google Scholar 

  • Hippe H, Caspari D, Fiebig K, Gottschalk G (1979) Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri. Proc Natl Acad Sci USA 76:494–498

    Google Scholar 

  • Hungate RE (1967) Hydrogen as an intermediate in the rumen fermentation. Arch Mikrobiol 59:158–164

    Google Scholar 

  • Kandler O, Schoberth S (1979) Murein structure of Acetobacterium woodii. Arch Microbiol 120:181–183

    Google Scholar 

  • Kaspar HF, Wuhrmann K (1978) Kinetic parameters and relative turn-overs of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7

    Google Scholar 

  • Matin A (1978) Organic nutrition of chemolithotrophic bacteria. Ann Rev Microbiol 32:433–468

    Google Scholar 

  • Rittenberg SC (1969) The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. In: Rose AH, Wilkinson JF (eds) Advances in microbial physiology, Vol 3, Academic Press, New York pp 159–196

    Google Scholar 

  • Schaffner W, Weissmann C (1973) A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem 56:502–514

    Google Scholar 

  • Schlegel HG, Eberhardt U (1972) Regulatory phenomena in the metabolism of Knallgasbacteria. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, Vol 7. Academic Press, New York, pp 205–242

    Google Scholar 

  • Schoberth S, Gottschalk G (1968) Considerations on the energy metabolism of Clostridium kluyveri. Arch. Microbiol 65:318–328

    Google Scholar 

  • Thauer RK, Fuchs G (1979) Methanogene Bakterien. Ungewöhnliche Zellkomponenten und Stoffwechselwege in einer Bakteriengruppe mit phylogenetischer Sonderstellung. Naturwissenschaften 66:89–94

    Google Scholar 

  • van der Westen HM, Mayhew SG, Veeger C (1978) Separation of hydrogenase from intact cells of Desulfovibrio vulgaris. FEBS Lett 86:122–126

    Google Scholar 

  • Wieringa KT (1936) Over het verdijnen van waterstof en koolzuur onder anaerobe voorwaarden. Antonie van Leeuwenhoek 7. Microbiol Serol 3:263–273

    Google Scholar 

  • Wieringa KT (1940) The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie van Leeuwenhoek 7. Microbiol Serol 6:251–262

    Google Scholar 

  • Winter JU, Wolfe RS (1980) Methane formation from fructose by syntrophic associations of Acetobacterium woodii and different strains of methanogens. Arch Microbiol 124:73–79

    Google Scholar 

  • Wolfe RS (1979) Microbial biochemistry of methane — a study in contrasts. In: Quayle JR (ed) International review of biochemistry Microbial Biochemistry, Vol 21. University Park Press, Baltimore, pp 267–300

    Google Scholar 

  • Wolin EA, Wolfe RS, Wolin MI (1964) Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol 87:993–998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, K., Gottschalk, G. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum . Arch. Microbiol. 128, 294–298 (1981). https://doi.org/10.1007/BF00422533

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422533

Key words

Navigation