Archives of Microbiology

, Volume 128, Issue 1, pp 113–119 | Cite as

Synchronization of DNA synthesis in Neurospora crassa by 2′-deoxyadenosine and spore selection

  • Margaret H. Fletcher
  • Anthony P. J. Trinci


2′-Deoxyadenosine (2 mM), a DNA inhibitor, was used to synchronize DNA synthesis in cultures of Neurospora crassa lys 3. The cultures recovered spontaneously from the inhibitor which had little or no effect on the synthesis of RNA, protein or carbohydrate or on the specific growth rate of the mould. The degree of ‘synchrony’ of DNA synthesis obtained with 2′-deoxyadenosine varied directly with the organism's specific growth rate when the latter was altered by temperature changes. A direct relationship was observed between the rate of synthesis of DNA during the S period and the organism's specific growth rate.

Conidia of Neurospora crassa lys 3 were separated into different density classes using urografin gradients; the separation treatment did not have an appreciable effect on the subsequent germination or growth of conidia. Populations of large, less dense conidia produced germ tubes more rapidly and more synchronously than populations of small, dense conidia. Cultures inoculated with the large conidia displayed continuous synthesis of RNA and protein but discontinuous synthesis of DNA.

Key words

Neurospora crassa DNA Synchrony 2′-Deoxyadenosine S period Duplication cycle Cell cycle Conidia Urografin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adebayo, A. H., Harris R. F., Gardner, W. R.: Turgor pressure of fungal mycelia. Trans. Br. Mycol. Soc. 57, 145–151 (1971)Google Scholar
  2. Alberghina, F. A. M.: Growth regulation in Neurospora crassa. Effects of nutrients and of temperature. Arch. Mikrobiol. 89, 83–94 (1971)Google Scholar
  3. Bainbridge, B. W.: Macromolecular composition and nuclear division during spore germination in Aspergillus nidulans. J. Gen. Microbiol. 66, 319–325 (1971)Google Scholar
  4. Blumenthal, L. K., Zahler, S. A.: Index for measurement of synchronization of cell populations. Science 135, 724 (1962)Google Scholar
  5. Burton, K.: A study of the conditions and mechanisms of the diphenylamine reagent for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323 (1956)Google Scholar
  6. Chaffin, W. J., Sogin, S. J.: Germ tube formation from zonal rotor fractions of Candida albicans. J. Bacteriol. 126, 771–776 (1976)Google Scholar
  7. Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of microbial cells. In: Methods of microbiology (J. R. Norris, D. W. Ribbons, eds.), vol. 5B, pp. 209–344. London: Academic Press 1971Google Scholar
  8. Hewitt, B. R.: Spectrophotometric determination of total carbohydrates. Nature (Lond.) 182, 246–247 (1958)Google Scholar
  9. Jagadish, M. N., Carter, B. L. A.: Effects of temperature and nutritional conditions on the mitotic cell cycle of Saccharomyces cerevisiae. J. Cell Sci. 31, 71–78 (1978)Google Scholar
  10. Johnson, G. C., Pringle, J. R., Hartwell, J. H.: Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Ex. Cell Res. 105, 79–98 (1977)Google Scholar
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 192, 265–275 (1951)Google Scholar
  12. Maaløe, O., Kjeldgaard, N. D.: Control of macromolecular synthesis. New York, Amsterdam: W. A. Benjamin 1966Google Scholar
  13. Martegani, E., Levi, M., Tezzi, F., Alberghina, L.: Nuclear division cycle in Neurospora crassa hyphae in different growth conditions. J. Bacteriol. (in press, 1980)Google Scholar
  14. Mitchison, J. M.: The biology of the cell cycle. London, New York, Melbourne: Cambridge University Press 1971Google Scholar
  15. Mitchison, J. M.: Enzyme synthesis during the cell cycle. In: Cell differentiation in microorganisms, plants and animals (L. Nover and K. Mothes, eds.), pp. 377–401. Amsterdam, New York, Oxford: North Holland Publishing Co. 1977Google Scholar
  16. Mitchison, J. M., Creanor, J.: Induction synchrony in the fission yeast Schizosaccharomyces pombe. Ex. Cell Res. 67, 368–374 (1971)Google Scholar
  17. Morris, D. J.: Quantitative determination of carbohydrates with Dreywood's anthrone reagents. Science 107, 254–255 (1948)Google Scholar
  18. Munch-Peterson, A.: Formation in vitro of deoxyadenosine triphosphate from deoxyadenosine in Ehrlich ascites cells. Biochem. Biophys. Res. Commun. 3, 392–396 (1960)Google Scholar
  19. Namboodiri, A. N.: Electron microscopic studies on the conidia and hyphae of Neurospora crassa. Caryologia 19, 117–133 (1966)Google Scholar
  20. Overgaard-Hansen, K., Klenow, H.: On the mechanism of inhibition of deoxyribonucleic acid synthesis in Ehrlich ascites tumor cells by deoxyadenosine in vitro. Biochemistry 47, 680–686 (1961)Google Scholar
  21. Padilla, G. M., Carter, B. A., Mitchison, J. M.: Germinating Schizosaccharomyces pombe spores separated by zonal centrifugation. Ex. Cell. Res. 93, 325–330 (1975)Google Scholar
  22. Prescott, D. M.: Reproduction of eukaryotic cells. New York, London: Academic Press 1976Google Scholar
  23. Rao, P. N., Engelberg, J.: Hela cells: effects of temperature on the life cycle. Science 148, 1092–1094 (1965)Google Scholar
  24. Sterna, L., Stadler, D.: Nuclear division cycle in germinating conidia of Neurospora crassa. J. Bacteriol. 136, 341–351 (1978)Google Scholar
  25. Trinci, A. P. J.: The duplication cycle and branching in fungi. In: Fungal walls and hyphal growth (J. H. Burnett and A. P. J. Trinci, eds.), pp. 319–358. London, New York, Melbourne: Cambridge University Press 1979Google Scholar
  26. Vogel, H. J.: A convenient medium for Neurospora (medium N). Micro. Gen. Bull. 13, 42–44 (1956)Google Scholar
  27. Wain, W. H., Price, M. F., Brayton, A. A., Cawson, R. A.: Macromolecular synthesis during the cell cycle of yeast and hyphal phase of Candida albicans. J. Gen. Microbiol. 97, 211–217 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Margaret H. Fletcher
    • 1
  • Anthony P. J. Trinci
    • 1
  1. 1.Microbiology DepartmentQueen Elizabeth CollegeLondonU.K.

Personalised recommendations