Archives of Microbiology

, Volume 128, Issue 1, pp 84–90 | Cite as

Efficiency of CO2 fixation in a glycollate oxidoreductase mutant of Alcaligenes eutrophus which exports fixed carbon as glycollate

  • William R. King
  • Kjell Andersen


Mutant strains of the facultative autotrophic bacterium Alcaligenes eutrophus blocked in glycollate utilization were isolated and characterized. One of the strains, AE161, which lacked glycollate oxidoreductase activity, excreted up to 1.2μmol glycollate/mg cell protein per hour during autotrophic growth. This mutant strain was used to study the efficiency of CO2 fixation in terms of how much of the fixed carbon was excreted as glycollate under different conditions. Glycollate excretion was not detected during heterotrophic growth. Only 1% of the total CO2 fixed was excreted as glycollate in an atmosphere of 4% CO2 plus 20% O2. The rate of glycollate excretion showed a large increase and CO2 fixation decreased as the CO2 concentration was lowered. Almost half (40–50%) of the total CO2 fixed was excreted as glycollate in an atmosphere of 0.07% CO2 plus 20% O2.

Key words

Alcaligenes eutrophus Efficiency of CO2 fixation Glycollate excretion Glycollate oxidoreductase Ribulose bisphosphate carboxylase/oxygenase 



2-pyridyl-hydroxymethane sulphonic acid


ribulose 1,5-bisphosphate


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, K.: Mutations altering the catalytic activity of a plant-type ribulose biphosphate carboxylase/oxygenase in Alcaligenes eutrophus. Biochim. Biophys. Acta 585, 1–11 (1979)Google Scholar
  2. Andersen, K., King, W. R., Valentine, R. C.: Catalytic mutants of ribulose bisphosphate carboxylase/oxygenase. In: Photosynthetic carbon assimilation (Siegelman, H. W., Hind, G., eds.), pp. 379–390. New York: Plenum Press 1978Google Scholar
  3. Andrews, T. J., Lorimer, G. H.: Photorespiration: Still unavoidable? FEBS Lett. 90, 1–9 (1978)Google Scholar
  4. Asami, S., Akazawa, T.: Biosynthetic mechanism of glycollate in Chromatium 6. Glycollate formation and metabolism under low O2. Plant Cell Physiol. 19, 1353–1361 (1978)Google Scholar
  5. Badger, M. R., Andrews, T. J.: Effects of CO2 and O2, and temperature on a high affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem. Biophys. Res. Commun. 60, 204–210 (1974)Google Scholar
  6. Berry, J. A., Boynton, J., Kaplan, A., Badger, M. R.: Growth and photosynthesis of Chlamydomonas reinhardtii as a function of CO2 concentration. Carnegie Institute Yearbook 75, 423–432 (1976)Google Scholar
  7. Bleiweis, A. S., Reeves, H. C., Ajl, S. J.: Rapid separation of some common intermediates of microbiol metabolism by thin-layer chromatography. Anal. Biochem. 20, 335–338 (1967)Google Scholar
  8. Bowes, G., Ogren, W. L., Hageman, R. H.: Phosphoglycolate production catalyzed by ribulose diphosphate carboxylase. Biochem. Biophys. Res. Commun. 45, 716–722 (1971)Google Scholar
  9. Bowien, B., Mayer, F.: Further studies on the quaternary structure of d-ribulose-1,5-bisphosphate carboxylase from Alcaligenes eutrophus. Eur. J. Biochem. 88, 97–107 (1978)Google Scholar
  10. Bowien, B., Mayer, F., Codd, G. A., Schlegel, H. G.: Purification, some properties, and quaternary structure of the d-ribulose-1,5-diphosphate carboxylase of Alcaligenes eutrophus. Arch. Microbiol. 110, 157–166 (1976)Google Scholar
  11. Calkins, V. P.: Microdetermination of glycolic and oxalic acids. Ind. Engng. Chem. Anal. Ed. 15, 762–763 (1943)Google Scholar
  12. Cheng, K. H., Miller, A. G., Colman, B.: An investigation of glycolate excretion in two species of blue-green algae. Planta (Berl.) 103, 110–116 (1972)Google Scholar
  13. Chollet, R.: The biochemistry of photorespiration. Trends Biochem. Sci. 2, 155–159 (1977)Google Scholar
  14. Codd, G. A., Bowien, B., Schlegel, H. G.: Glycollate production and excretion in Alcaligenes eutrophus. Arch. Microbiol. 110, 167–171 (1976)Google Scholar
  15. Codd, G. A., Smith, B. M.: Glycollate formation and excretion by the purple photosynthetic bacterium Rhodospirillum rubrum. FEBS Lett. 48, 105–108 (1974)Google Scholar
  16. Cohen, Y., de Jonge, I., Kuenen, J. G.: Excretion of glycolate by Thiobacillus neapolitanus grown in continuous culture. Arch. Microbiol. 122, 189–197 (1979)Google Scholar
  17. Drews, G.: Untersuchungen zur Regulation der Bakteriochlorophyll-Synthese bei Rhodospirillum rubrum. Arch. Mikrobiol. 51, 186–198 (1965)Google Scholar
  18. Döhler, G., Braun, F.: Untersuchung der Beziehung zwischen extracellulärer Glykolsäure-Ausscheidung und der photosynthetischen CO2-Aufnahme bei der Blaualge Anacystis nidulans. Planta (Berl.) 98, 357–361 (1971)Google Scholar
  19. Halldal, P., Holmen, Aa. T.: The interrelationship between photosynthetic electron transport, glycolate excretion and amino acid metabolism in the blue-green alga Anacystis nidulans. Plant Cell Physiol. 20, 757–763 (1979)Google Scholar
  20. Han, T.-W., Eley, J. H.: Glycolate excretion by Anacystis nidulans: Effect of bicarbonate concentration, oxygen concentration and light intensity. Plant Cell Physiol. 14, 285–291 (1973)Google Scholar
  21. Jensen, R. G., Bahr, J. T.: Ribulose 1,5-bisphosphate carboxylaseoxygenase. Ann. Rev. Plant Physiol. 28, 379–400 (1977)Google Scholar
  22. Ku, S. B., Edwards, G. E.: Oxygen inhibition of photosynthesis. I. Temperature dependence and relation to O2/CO2 solubility ratio. Plant Physiol. 59, 986–990 (1977a)Google Scholar
  23. Ku, S. B., Edwards, G. E.: Oxygen inhibition of photosynthesis. II. Kinetic characteristics as affected by temperature. Plant Physiol. 59, 991–999 (1977b)Google Scholar
  24. Kuehn, G. D., McFadden, B. A.: Ribulose 1,5-diphosphate carboxylase from Hydrogenomonas eutropha and Hydrogenomonas facilis. I. Purification, metallic ion requirements, inhibition, and kinetic constants. Biochemistry 8, 2394–2402 (1969a)Google Scholar
  25. Kuehn, G. D., McFadden, B. A.: Ribulose 1,5-diphosphate carboxylase from Hydrogenomonas eutropha and Hydrogenomonas facilis. II. Molecular weight, subunits, composition, and sulfhydryl groups. Biochemistry 8, 2403–2408 (1969b)Google Scholar
  26. Laing, W. A., Ogren, W. L., Hageman, R. H.: Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2, and ribulose-1,5-diphosphate carboxylase. Plant Physiol. 54, 678–685 (1974)Google Scholar
  27. Lord, J. M.: Glycolate oxidoreductase in Escherichia coli. Biochim. Biophys. Acta 267, 227–237 (1972)Google Scholar
  28. Lorimer, G. H., Andrews, T. J., Tolbert, N. E.: Ribulose diphosphate oxygenase. II. Further proof of reaction products and mechanism of action. Biochemistry 12, 18–23 (1973)Google Scholar
  29. Lorimer, G. H., Krause, G. H., Berry, J. A.: The incorporation of [18O] oxygen into glycollate by intact chloroplasts. FEBS Lett. 78, 199–202 (1977)Google Scholar
  30. Lorimer, G. H., Osmond, C. B., Akazawa, T., Asami, S.: On the mechanism of glycolate synthesis by Chromatium and Chlorella. Arch. Biochem. Biophys. 185, 49–56 (1978)Google Scholar
  31. McFadden, B. A.: Assimilation of one-carbon compounds. In: The bacteria (Ornston, L. N., Sokatch, J. R., eds.), vol. 6, pp. 219–304. New York: Academic Press 1978Google Scholar
  32. Nelson, E. B., Tolbert, N. E.: Glycolate dehydrogenase in green algae. Arch. Biochem. Biophys. 141, 102–110 (1970)Google Scholar
  33. Purohit, K., McFadden, B. A.: Quaternary structure and oxygenase activity of d-ribulose-1,5-bisphosphate carboxylase from Hydrogenomonas eutropha. J. Bacteriol. 129, 415–421 (1977)Google Scholar
  34. Reh, M., Schlegel, H. G.: Anreicherung und Isolierung autotropher Mutanten von Hydrogenomonas H16. Arch. Mikrobiol. 67, 99–109 (1969)Google Scholar
  35. Repaske, R., Ambrose, C. A., Repaske, A. C., DeLacy, M. L.: Bicarbonate requirement for the elimination of the lag period of Hydrogenomonas eutropha. J. Bacteriol. 107, 712–717 (1971)Google Scholar
  36. Schlegel, H. G., Kaltwasser, H., Gottschalk, G.: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209–222 (1961)Google Scholar
  37. Takabe, T., Osmond, C. B., Summons, R. E., Akazawa, T.: Effect of oxygen on photosynthesis and biosynthesis of glycolate in photoheterotrophically grown cells of Rhodospirillum rubrum. Plant Cell Physiol. 20, 233–241 (1979)Google Scholar
  38. Tolbert, N. W.: Photorespiration. In: Algal physiology and biochemistry (Stewart, W. D. P., ed.), pp. 474–504. Oxford: Blackwell 1974Google Scholar
  39. Vogels, G. D., van der Drift, C.: Differential analysis of glyoxylate derivatives. Anal. Biochem. 33, 143–157 (1970)Google Scholar
  40. Zelitch, I.: The relationship of glycolic acid to respiration and photosynthesis in tobacco leaves. J. Biol. Chem. 234, 3077–3081 (1959)Google Scholar
  41. Zelitch, I.: Improving the efficiency of photosynthesis. Science 188, 626–633 (1975)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • William R. King
    • 1
  • Kjell Andersen
    • 1
  1. 1.Plant Growth Laboratory/Department of Agronomy and Range ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations