Skip to main content
Log in

Comparison of phycoerythrins (542, 566 nm) from cryptophycean algae

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The phycoerythrins from Rhodomonas sp. strain 3-C and Cryptomonas ovata var. palustris were purified and partially characterized. The phycoerythrin from Rhodomonas had a single visible absorption maximum at 542 nm with a shoulder at approximately 562 nm and is, therefore, representative of cryptophyte type I phycoerythrin. The phycoerythrin from C. ovata var. palustris had a single absorption maximum at 566 nm and is, therefore, representative of cryptophyte type III phycoerythrin. Calibrated gel filtration chromatography showed that both of these phycoerythrins have a native molecular weight of 30 800 daltons. Calibrated sodium dodecyl sulfate gel electrophoresis demonstrated that both pigments were composed of two subunits with apparent molecular weights of 17 700 and 11 000 daltons. On polyacrylamide gel electrofocusing both these phycoerythrins had an isoionic point of 4.90.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, M. B.: Pigments of some photosynthetic cryptomonads, abstract 10–37. In: O. Hoffmann-Ostenhof (ed.): International Congress of Biochemistry, 4th. Vienna 1958, Vol. XV. London: Pergamon Press 1960.

    Google Scholar 

  • Allen, M. B., Dougherty, E. C., McLaughlin, J. J. A.: Chromoprotein pigments of some cryptomonad flagellates. Nature (Lond.) 184, 1047–1049 (1959).

    Google Scholar 

  • Andrews, P.: Estimation of the molecular weights of proteins by Sephadex gelfiltration. Biochem. J. 91, 222–233 (1964).

    Google Scholar 

  • Barber, R. T., White, A. W., Siegelman, H. W.: Evidence for a cryptomonad symbiont in the ciliate Cyclotrichium meunieri. J. Phycol. 5, 86–88 (1969).

    Google Scholar 

  • Beisenherz, G., Bucher, T., Garbade, K. H.: α-glycerophosphate dehydrogenase from rabbit muscle, pp. 391–397. In: S. P. Colowick and N. O. Kaplan (eds.): Methods in enzymology, Vol. I. New York: Academic Press 1955.

    Google Scholar 

  • Bennett, A., Bogorad, L.: Properties of subunits and aggregates of blue-green algal biliproteins. Biochemistry 10, 3625–3634 (1971).

    Google Scholar 

  • Berns, D. S.: Immunochemistry of biliproteins. Plant Physiol. 42, 1569–1586 (1967).

    Google Scholar 

  • Edwards, M., Gantt, E.: Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J. Cell Biol. 50, 896–900 (1971).

    Google Scholar 

  • Gantt, E., Conti, S. F.: Granules associated with the chloroplast lamellae of Porphyridium cruentum. J. Cell Biol. 29, 423–434 (1966).

    Google Scholar 

  • Gantt, E., Edwards, M. R., Provasoli, L.: Chloroplast structure of the cryptophyceae. J. Cell Biol. 48, 280–290 (1971).

    Google Scholar 

  • Gardner, G., Pike, C. S., Rice, H. V., Briggs, W.: Disaggregation of phytochrome in vitro — A consequence of proteolysis. Plant Physiol. 48, 686–693 (1971).

    Google Scholar 

  • Glazer, A. N., Cohen-Bazire, G.: Subunit structure of the phycobiliproteins of blue-green algae. Proc. nat. Acad. Sci. (Wash.) 68, 1398–1401 (1971).

    Google Scholar 

  • Glazer, A. N., Cohen-Bazire, G., Stanier, R. Y.: Characterization of phycoerythrin from a Cryptomonas sp. Arch. Mikrobiol. 80, 1–18 (1971).

    Google Scholar 

  • Haxo, F. T., Fork, D. C.: Photosynthetically active accessory pigments of cryptomonads. Nature (Lond.) 184, 1051–1052 (1959).

    Google Scholar 

  • Hoogenhout, H., Amesz, J.: Growth rates of photosynthetic microorganisms in laboratory cultures. Arch. Mikrobiol. 50, 10–24 (1965).

    Google Scholar 

  • Nolan, D. N., O'hEocha, C.: Determination of molecular weights of algal biliproteins by gel filtration. Biochem. J. 103, 39P-40P (1967).

    Google Scholar 

  • O'hEocha, C.: Phycobilins, pp. 421–435. In: R. A. Lewin (ed.): Physiology and biochemistry of algae. New York: Academic Press 1962.

    Google Scholar 

  • O'hEocha, C.: Biliproteins of algae. Ann. Rev. Plant Physiol. XVI, pp. 415–434 (1965).

    Google Scholar 

  • O'hEocha, C.: Biliproteins, pp. 407–421. In: T. W. Goodwin (ed.): Biochemistry of chloroplasts, Vol. I. New York: Academic Press 1966.

    Google Scholar 

  • O'hEocha, C., O'Carra, P., Mitchell, D.: Biliproteins of cryptomonad algae. Proc. roy. Irish Acad. B 63, 191–200 (1964).

    Google Scholar 

  • O'hEocha, C., Raftery, M.: Phycoerythrins and phycocyanins of cryptomonads. Nature (Lond.) 184, 1049–1051 (1959).

    Google Scholar 

  • Provasoli, L., McLaughlin, J. J.: Limited heterotrophy of some photosynthetic dinoflagellates, pp. 105–113. In: C. H. Oppenheimer (ed.): Symposium in Marine Microbiology. Springfield, Ill.: Ch. C. Thomas 1963.

    Google Scholar 

  • Siegelman, H. W., Guillard, R. R. L.: Large-scale culture of algae. Meth. enzymol. 23, 110–115 (1971).

    Google Scholar 

  • Vaughan, M. H., Jr.: Structural and comparative studies of the algal protein phycoerythrin. Ph. D. Thesis, Massachusetts Institute of Technology 1964.

  • Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4406–4412 (1969).

    Google Scholar 

  • Wrigley, C.: Gel electrofocusing — A technique for analyzing multiple protein samples by isoelectric focusing. Sci. Tools 15, 17–23 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brooks, C., Gantt, E. Comparison of phycoerythrins (542, 566 nm) from cryptophycean algae. Archiv. Mikrobiol. 88, 193–204 (1973). https://doi.org/10.1007/BF00421845

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00421845

Keywords

Navigation