Skip to main content
Log in

Nucleotide sequence of the mitochondrial cytochrome oxidase subunit II gene in the yeast Hansenula saturnus

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The gene for subunit II of cytochrome oxidase in the yeast Hansenula saturnus was previously shown to be located on a 1.7 kb HindIII-BamHI fragment of mitochondrial DNA (Lawson and Deters, accompanying paper). In this paper, we report the nucleotide sequence of a large part of this fragment, covering the coding region of the subunit II gene, designated coxII, and its 5′ and 3′ flanking regions. The coding region of the coxII gene consists of a continuous open reading frame, 744 nucleotides long, containing 6 in frame TGA codons. Examination of the sequence and alignment with known homologous gene sequences of other organisms indicates that TGA codes for tryptophan in H. saturnus mitochondria as it does in several other mitochondria. Despite considerable homology to subunit II of Saccharomyces cerevisiae, there are 9 codons used in coxII that are not used in the corresponding S. cerevisiae gene. CTT, which is believed to code for threonine in S. cerevisiae mitochondria, appears 3 times in coxII and probably codes for leucine. While the CGN family is rarely, if ever, used in S. cerevisiae mitochondria, CGT appears 4 times in coxII and probably codes for arginine. The deduced amino acid sequence, excluding the first ten amino acids at the N-terminus, is 81% homologous to the amino acid sequence of the S. cerevisiae subunit II protein. The first ten amino acids at the N-terminus are not homologous to the N-terminus of the S. cerevisiae protein but are highly homologous to the first ten amino acids of the deduced amino acid sequence of subunit II of Neurospora crassa. Minor variations of a transcription initiation signal and an end of message or processing signal reported in S. cerevisiae are found in the regions flanking the H. saturnus coxII gene. The subunit II gene contains numerous symmetrical elements, i.e. palindromes, inverted repeats, and direct repeats. Some of these have conserved counterparts in the S. cerevisiae subunit II gene, suggesting that they may be functionally or structurally important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson S, deBruijn MHL, Coulson AR, Eperson IC, Sanger F, Young IG (1982) J Mol Biol 156:683–717

    Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature 290:457–465

    Google Scholar 

  • Barrell BG, Andeson S, Bankier AT, de Bruijn MHC, Chen E, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1980) Proc Natl Acad Sci USA 77:3164–3166

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Cell 26:167–180

    Google Scholar 

  • Biggin MD, Gibsons TJ, Hong GF (1983) Proc Natl Acad Sci USA 80:3963–3965

    Google Scholar 

  • Bisson R, Steffens GCM, Capaldi RA, Buse G (1982) FEBS Lett 144:359–363

    Google Scholar 

  • Bonen L, Boer PH, Gray MW (1984) EMBO J 3:2531–2536

    Google Scholar 

  • Bonitz SG, Berlani R, Coruzzi G, Li M, Macino G, Nobrega FG, Nobrega MP, Thalenfeld BE, Tzagoloff A (1980) Proc Natl Acad Sci USA 77:3167–3170

    Google Scholar 

  • Cabral F, Solioz M, Rudin Y, Schatz G, Claviler L, Slonimski PP (1978) J Biol Chem 253:297–304

    Google Scholar 

  • Coruzzi G, Tzagoloff A (1979) J Biol Chem 254:9324–9330

    Google Scholar 

  • Dickerson RE, Timkovich R (1975) In: Boyer PC (ed) The enzymes, vol XI. Academic Press, pp 397–547

  • Dujon B (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces. Life cycle and inheritance. Cold Spring Harbor Laboratory, pp 505–635

  • Felton J (1983) Biotechniques 1:42–43

    Google Scholar 

  • Fox TD (1979a) J Mol Biol 130:63–82

    Google Scholar 

  • Fox TD (1979b) Proc Natl Acad Sci USA 76:6534–6538

    Google Scholar 

  • Fox TD, Leaver CJ (1981) Cell 26:315–323

    Google Scholar 

  • Freedman JA, Chan SHP (1984) J Bioenerg Biomembr 16:75–100

    Google Scholar 

  • Hiesel R, Brennicke A (1983) EMBO J 2:2173–2178

    Google Scholar 

  • Holmes D, Quigley M (1981) Anal Biochem 114:193–197

    Google Scholar 

  • Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman LI (1982) Cell 30:617–626

    Google Scholar 

  • Kao T, Moon E, Wu R (1984) Nucleic Acids Res 12:7305–7314

    Google Scholar 

  • Kroon AM (1983) In: Kroon AM (ed) Genes: Structure and expression. John Wiley and Sons Ltd, pp 347–356

  • Lawson JE, Deters DW (1985) Curr Genet 9:345–350

    Google Scholar 

  • Li M, Tzagoloff A (1979) Cell 18:47–53

    Google Scholar 

  • Macino G, Morelli G (1983) J Biol Chem 258:12230–13235

    Google Scholar 

  • Mannahaupt G, Michaelis G, Pratje E (1983) In: Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1983. Nucleo-mitocondrial interactions. Walter de Gruyter, pp 449–454

  • Michel F (1984) Curr Genet 8:307–317

    Google Scholar 

  • Millet F, de Jong C, Paulson L, Capaldi RA (1983) Biochemistry 22:546–552

    Google Scholar 

  • Osinga KA, De Haan M, Christianson T, Tabak HF (1982) Nucleic Acids Res 10:7993–8006

    Google Scholar 

  • Osinga KA, De Vries E, Van der Horst G, Tabak HF (1984a) Nucleic Acids Res 12:1889–1900

    Google Scholar 

  • Osinga KA, De Vries E, Van der Horst G, Tabak HF (1984b) EMBO J 3:829–834

    Google Scholar 

  • Poyton RO, Schatz G (1975) J Biol Chem 250:762–766

    Google Scholar 

  • Sanger F, Nicklen S, Coulson RA (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Slonimski P, Tzagoloff A (1976) Eur J Biochem 61:27–41

    Google Scholar 

  • Steffens GJ, Buse G (1979) Hoppe-Seyler's Z Physiol Chem 360:613–619

    Google Scholar 

  • Van den Boogaart P, van Dijk S, Agsteribbe E (1982) FEBS Lett 147:97–100

    Google Scholar 

  • Wickerham LJ (1970) In: Lodder J (ed) The Yeasts. A Taxonomic Study. North Holland Publishing Co, pp 227–245, 299–302

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawson, J.E., Deters, D.W. Nucleotide sequence of the mitochondrial cytochrome oxidase subunit II gene in the yeast Hansenula saturnus . Curr Genet 9, 351–360 (1985). https://doi.org/10.1007/BF00421605

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00421605

Key words

Navigation