Mechanism of the anticoagulant action of heparin

Summary

The anticoagulant effect of heparin, a sulfated glycosaminoglycan produced by mast cells, requires the participation of the plasma protease inhibitor antithrombin, also called heparin cofactor. Antithrombin inhibits coagulation proteases by forming equimolar, stable complexes with the enzymes. The formation of these complexes involves the attack by the enzyme of a specific Arg-Ser bond in the carboxy-terminal region of the inhibitor. The complexes so formed are not dissociated by denaturing solvents, which indicates that a covalent bond may contribute to their stability. This bond may be an acyl bond between the active-site serine of the enzyme and the arginine of the cleaved reactive bond of the inhibitor. However, the native complexes dissociate slowly at near-neutral pH into free enzyme and a modified inhibitor, cleaved at the reactive bond. So, antithrombin apparently functions as a pseudo-substrate that traps the enzyme in a kinetically stable complex.

The reactions between antithrombin and coagulation proteases are slow in the absence of heparin. However, optimal amounts of heparin accelerate these reactions up to 2 000-fold, thereby efficiently preventing the formation of fibrin in blood. The accelerating effect, and thus the anticoagulant activity, is shown by only about one-third of the molecules in all heparin preparations, while the remaining molecules are almost inactive. The highly active molecules bind tightly to antithrombin, i.e. with a binding constant of slightly below 108 M−1 at physiological ionic strength, while the relatively inactive molecules bind about a thousand-fold more weakly. The binding of the high-affinity heparin to antithrombin is accompanied by a conformational change in the inhibitor that is detectable by spectroscopic and kinetic methods. This conformational change follows an initial, weak binding of heparin to antithrombin and causes the tight interaction between polysaccharide and inhibitor that is prerequisite to heparin anticoagulant activity. It has also been postulated that the conformational change leads to a more favourable exposure of the reactive site of antithrombin, thereby allowing the rapid interaction with the proteases.

Heparin also binds to the coagulation proteases. Recent studies indicate that this binding is weaker and less specific that the binding to antithrombin. Nevertheless, for some enzymes, thrombin, Factor IXa and Factor XIa, an interaction between heparin and the protease, in addition to that between the polysaccharide and antithrombin; apparently is involved in the accelerated inhibition of the enzymes. The effect of this interaction may be to approximate enzyme with inhibitor in an appropriate manner. However, the bulk of the evidence available indicates that binding of heparin to the protease alone cannot be responsible for the accelerating effect of the polysaccharide on the antithrombin-protease reaction.

Heparin acts as a catalyst in the antithrombin-protease reaction, i.e. it accelerates the reaction in non-stoichiometric amounts and is not consumed during the reaction. This ability can be explained by heparin being released from the antithrombin-protease complex for renewed binding to antithrombin, once the complex has been formed. Such a decresed affinity of heparin for the antithrombin complex, compared to the affinity for antithrombin alone, has been demonstrated.

The structure of the antithrombin-binding region in heparin has been investigated following the isolation of oligosaccharides with high affinity for antithrombin. The smallest such oligosaccharide, an octasaccharide, obtained after partial random depolymerization of heparin with nitrous acid, was found to contain a unique glucosamine-3-O-sulfate group, which could not be detected in other portions of the high affinity heparin molecule and which was absent in heparin with low affinity for antithrombin. The actual antithrombin-binding region within this octasaccharide molecule has been identified as a pentasaccharide sequence with he predominant structure: →N-acetyl-D-glucosamine(6-O-SO3)→D-glucoronic acid→D-glucosamine(N-SO3;3,6-di-O-SO3)→L-iduronic acid(2-O-SO3)→D-glucosamine(N-SO3;6-O-SO3). In addition to the 3-O-sulfate group, both N-sulfate groups as well as the 6-O-sulfate group of the N-acetylated glucosamine unit appear to be essential for the interaction with antithrombin. The remarkably constant structure of this sequence, as compared to other regions of the heparin molecule, suggests a strictly regulated mechanism of biosynthesis.

The ability of heparin to potentiate the inhibition of blood coagulation by antithrombin generally decreases with decreasing molecular weight of the polysaccharide. However, individual coagulation enzymes differ markedly with regard to this molecular-weight dependence. Oligosaccharides in the extreme low-molecular weight range, i.e. octa- to dodecasaccharides, with high affinity for antithrombin have high anti-Factor Xa-activity but are virtually unable to potentiate the inhibition of thrombin. Furthermore, such oligosaccharides are ineffective in preventing experimentally induced venous thrombosis in rabbits. Slightly larger oligosaccharides, containing 16 to 18 monosaccharide residues, show significant anti-thrombin as well as antithrombotic activities, yet have little effect on overall blood coagulation. These findings indicate that the affinity of a heparin fragment for antithrombin is not in itself a measure of the ability to prevent venous thrombo-genesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential as an antithrombotic agent.

The biological role of the interaction between heparin and antithrombin is unclear. In addition to a possible function in the regulation of hemostasis, endogenous heparin may serve as a regulator of extravascular serine proteinases. Mouse peritoneal macrophages have been found to synthesize all the enzymes that constitute the extrinsic pathway of coagulation. Moreover, tissue thromboplastin is produced by these cells in response to a functional interaction with activated T-lymphocytes. The inhibition of this extravascular coagulation system by heparin, released from mast cells, may be potentially important in modulating inflammatory reactions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    McLean, J., 1916. Am. J. Physiol. 41: 250–257.

    Google Scholar 

  2. 2.

    Howell, W. H. and Holt, E., 1918. Am. J. Physiol. 47: 328–341.

    Google Scholar 

  3. 3.

    Charles, A. F. and Scott, D. A., 1933. J. Biol. Chem. 102: 431–435.

    Google Scholar 

  4. 4.

    Yosisawa, Z., 1964. Biochim. Biophys. Res. Commun. 16: 336–341.

    Google Scholar 

  5. 5.

    Horner, A. A., 1977. Fed. Proc. 36: 35–39.

    Google Scholar 

  6. 6.

    Toledo, O. M. S. and Dietrich, C. P., 1977. Biochim. Biophys. Acta 498: 114–122.

    Google Scholar 

  7. 7.

    Frommhagen, L. H., Fahrenbach, M. M., Brockman, J. B., Jr. and Stokstad, E. L. R., 1953. Proc. Soc. Exp. Biol. Med. 82: 280–283.

    Google Scholar 

  8. 8.

    Cássaro, C. M. F. and Dietrich, C. P., 1977. J. Biol. Chem. 252: 2254–2261.

    Google Scholar 

  9. 9.

    Jorpes, E., Holmgren, H. and Wilander, O., 1937. Zeitschr. Mikr.-Anat. Forsch. 42: 279–301.

    Google Scholar 

  10. 10.

    Schiller, S. and Dorfman, A., 1959. Biochim. Biophys. Acta 31: 278–280.

    Google Scholar 

  11. 11.

    Yurt, R. W., Leid, R. W., Jr., Austen, K. F. and Silbert, J. E., 1977. J. Biol. Chem. 252: 518–521.

    Google Scholar 

  12. 12.

    Berlin, G. and Enerbäck, L., 1978. J. Histochem. & Cytochem. 26: 14–21.

    Google Scholar 

  13. 13.

    Jaques, L. B. and Waters, E. T., 1941. J. Physiol. 99: 454–466.

    Google Scholar 

  14. 14.

    Jacobsson, K.-G. and Lindahl, U., 1979. Thromb. Haemostas. 42: 84.

    Google Scholar 

  15. 15.

    Howell, W. H., 1925. Am. J. Physiol. 71: 553–562.

    Google Scholar 

  16. 16.

    Quick, A. J., 1938. Am. J. Physiol. 123: 712–719.

    Google Scholar 

  17. 17.

    Brinkhous, K. M., Smith, H. P., Warner, E. D. and Seegers, W. H., 1939. Am. J. Physiol. 125: 683–687.

    Google Scholar 

  18. 18.

    Seegers, W. H., Johnson, J. F. and Fall, C., 1954. Am. J. Physiol. 176: 97–103.

    Google Scholar 

  19. 19.

    Monkhouse, F. C., France, E. S. and Seegers, W. H., 1955. Circ. Res. 3: 397–402.

    Google Scholar 

  20. 20.

    Waugh, D. F. and Fitzgerald, M. A., 1956. Am. J. Physiol. 184: 627–638.

    Google Scholar 

  21. 21.

    Blombäck, B., Blombäck, M. and Olsson, P., 1963. Thromb. Diath. Haemorrh. 9: 368–386.

    Google Scholar 

  22. 22.

    Abildgaard, U., 1968. Scand. J. Clin. Lab. Invest. 21: 89–91.

    Google Scholar 

  23. 23.

    Rosenberg, R. D. and Damus, P. S., 1973. J. Biol. Chem. 248: 6490–6505.

    Google Scholar 

  24. 24.

    Rosenberg, R. D., 1977. Fed. Proc. 36: 10–18.

    Google Scholar 

  25. 25.

    Barrowcliffe, T. W., Johnson, E. A. and Thomas, D., 1978. Br. Med. Bull. 34: 143–150.

    Google Scholar 

  26. 26.

    Comper, W. D., 1981. Heparin (and Related Polysaccharides), Gordon & Breach, New York.

    Google Scholar 

  27. 27.

    Jackson, C. M. and Nemerson, Y., 1980. Ann. Rev. Biochem. 49: 767–811.

    Google Scholar 

  28. 28.

    Abildgaard, U., 1967. Scand. J. Clin. Lab. Invest. 19: 190–195.

    Google Scholar 

  29. 29.

    Lane, J. L., Bird, P. and Rizza, C. R., 1975. Br. J. Haematol. 30: 103–115.

    Google Scholar 

  30. 30.

    Abildgaard, U., 1979. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis (Collen, D., Wiman, B. and Verstraete, M., eds.), pp. 31–33, Elsevier/North-Holland, Amsterdam.

  31. 31.

    Tollefsen, D. M. and Blank, M. K., 1981. J. Clin. Invest. 68: 589–596.

    Google Scholar 

  32. 32.

    Yin, E. T., Wessler, S. and Stoll, P. J., 1971. J. Biol. Chem. 246: 3712–3719.

    Google Scholar 

  33. 33.

    Damus, P. S., Hicks, M. and Rosenberg, R. D., 1973. Nature (London) 246: 355–357.

    Google Scholar 

  34. 34.

    Rosenberg, J. S., McKenna, P. W. and Rosenberg, R. D., 1975. J. Biol. Chem. 250: 8883–8888.

    Google Scholar 

  35. 35.

    Kurachi, K., Fujikawa, K., Schmer, G. and Davie, E. W., 1976. Biochemistry 15: 373–377.

    Google Scholar 

  36. 36.

    Stead, N., Kaplan, A. and Rosenberg, R. D., 1976. J. Biol. Chem. 251: 6481–6488.

    Google Scholar 

  37. 37.

    Highsmith, R. F. and Rosenberg, R. D., 1974. J. Biol. Chem. 249: 4335–4338.

    Google Scholar 

  38. 38.

    Mahoney, W. C., Kurachi, K. and Hermodson, M. A., 1980. Eur. J. Biochem. 105: 545–552.

    Google Scholar 

  39. 39.

    Jesty, J., 1978. Arch. Biochem. Biophys. 185: 165–173.

    Google Scholar 

  40. 40.

    Marciniak, E., 1973. Br. J. Haematol. 24: 391–400.

    Google Scholar 

  41. 41.

    Miletich, J. P., Jackson, C. M. and Majerus, P. W., 1978. J. Biol. Chem. 253: 6908–6913.

    Google Scholar 

  42. 42.

    Miller-Andersson, M., Borg, H. and Andersson, L.-O., 1974. Thromb. Res. 5: 439–452.

    Google Scholar 

  43. 43.

    Kurachi, K., Schmer, G., Hermodson, M. A., Teller, D. C. and Davie, E. W., 1976. Biochemistry 15: 368–373.

    Google Scholar 

  44. 44.

    Nordenman, B., Nyström, C. and Björk, I., 1977. Eur. J. Biochem. 78: 195–203.

    Google Scholar 

  45. 45.

    Furugren, B., Andersson, L.-O. and Einarsson, R., 1977. Arch. Biochem. Biophys. 178: 419–424.

    Google Scholar 

  46. 46.

    Koide, T., 1979. J. Biochem. 86: 1841–1850.

    Google Scholar 

  47. 47.

    Collen, D., Schetz, J., deCock, F., Holmer, E. and Verstraete, M., 1977. Eur. J. Clin. Invest. 7: 27–35.

    Google Scholar 

  48. 48.

    Murano, G., Williams, L., Miller-Andersson, M., Aronson, D. L. and King, C., 1980. Thromb. Res. 18: 259–262.

    Google Scholar 

  49. 49.

    Petersen, T. E., Dude k-Wosciechowska, G., Sottrup-Jensen, L. and Magnusson, S., 1979. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis (Collen, D., Wiman, B. and Verstraete, M., eds.) pp. 43–54, Elsevier/North-Holland, Amsterdam.

  50. 50.

    Franzén, L. E., Svensson, S. and Larm, O., 1980. J. Biol. Chem. 255: 5090–5093.

    Google Scholar 

  51. 51.

    Mizuochi, T., Fujii, J., Kurachi, K. and Kobata, A., 1980. Arch. Biochem. Biophys. 203: 458–465.

    Google Scholar 

  52. 52.

    Carrell, R. W., Boswell, D. R., Brennan, S. O. and Owen, M. C., 1980. Biochem. Biophys. Res. Commun. 93: 399–402.

    Google Scholar 

  53. 53.

    Hunt, L. T. and Dayhoff, M. O., 1980. Biochem. Biophys. Res. Commun. 95: 864–871.

    Google Scholar 

  54. 54.

    Lindahl, U., 1976. In: MTP International Reviews of Science; Organic Chemistry, Series Two — Carbohydrate Chemistry (Aspinall, G. O., ed) Vol. 7, pp. 283–312, Butterworths, London.

  55. 55.

    Lindahl, U. and Höök, M., 1978. Ann. Rev. Biochem. 47: 385–417.

    Google Scholar 

  56. 56.

    Rodén, L., 1980. In: The Biochemistry of Glycoproteins and Proteoglycans (Lennartz, W. J., ed.) pp. 267–371, Plenum, New York.

  57. 57.

    Lindahl, U., Höök, M., Bäckström, G., Jacobsson, I., Riesenfeld, J., Malmström, A., Rodén, L. and Feingold, D. S., 1977. Fed. Proc. 36: 19–24.

    Google Scholar 

  58. 58.

    Jacobsson, I. and Lindahl, U., 1980. J. Biol. Chem. 255: 5094–5100.

    Google Scholar 

  59. 59.

    Riesenfeld, J., Höök, M. and Lindahl, U., 1980. J. Biol. Chem. 255: 922–928.

    Google Scholar 

  60. 60.

    Feingold, D. S., Rodén, L., Forsee, T., Jacobsson, I., Jensen, J., Lindahl, U., Malmström, A. and Prihar, H., 1981. In: Biology of Heparin (Lundblad, R. L., Brown, W. V., Mann, K.G. and Roberts, H.R., eds.) pp. 157–171, Elsevier/North-Holland, New York.

  61. 61.

    Robinson, H. C., Horner, A. A., Höök, M., Ögren, S. and Lindahl, U., 1978. J. Biol. Chem. 253: 6687–6693.

    Google Scholar 

  62. 62.

    Ögren, S. and Lindahl, U., 1971. Biochem. J. 125: 1119–1129.

    Google Scholar 

  63. 63.

    Horner, A. A., 1972. Proc. Natl. Acad. Sci. U.S.A. 69: 3469–3473.

    Google Scholar 

  64. 64.

    Ögren, S. and Lindahl, U., 1975. J. Biol. Chem. 250: 2690–2697.

    Google Scholar 

  65. 65.

    Young, E. and Horner, A. A., 1979. Biochem. J. 180: 587–596.

    Google Scholar 

  66. 66.

    Horner, A. A. and Young, E., 1979. In: Glycoconjugates; Proceedings of the Fifth International Symposium (Schauer, R., Boer, P., Buddecke, E., Kramer, M. F., Vliegenthart, J. F. G. and Wiegandt, H., eds.) pp. 63–64, Thieme, Stuttgart.

  67. 67.

    Örgen, S. and Lindahl, U., 1976. Biochem. J. 154: 605–611.

    Google Scholar 

  68. 68.

    Jesty, J., 1979. J. Biol. Chem. 254: 10044–10050.

    Google Scholar 

  69. 69.

    Feinman, R. D., 1979. In: The Physiological Inhibitors of Blood Coagulation and Fibrinolysis (Collen, D., Wiman, B. and Verstraete, M., eds.) pp. 55–66, Elsevier/North-Holland, Amsterdam.

  70. 70.

    Danielsson, Å. and Björk, I., 1982. Biochem. J., (in press).

  71. 71.

    Villanueva, G. B. and Danishefsky, I., 1979. Biochemistry 18: 810–817.

    Google Scholar 

  72. 72.

    Owen, W. G., 1975. Biochim. Biophys. Acta 405: 380–387.

    Google Scholar 

  73. 73.

    Jesty, J., 1979. J. Biol. Chem. 254: 1044–1049.

    Google Scholar 

  74. 74.

    Fish, W. W. and Björk, I., 1979. Eur. J. Biochem. 101: 31–38.

    Google Scholar 

  75. 75.

    Longas, M. O. and Finlay, T. H., 1980. Biochem. J., 189: 481–489.

    Google Scholar 

  76. 76.

    Björk, I., Jackson, C. M., Jörnvall, H., Lavine, K. K., Nordling, K. and Salsgiver, W. J., 1982. J. Biol. Chem. 257: 2406–2411.

    Google Scholar 

  77. 77.

    Björk, I., Danielsson, Å., Fenton, J. W., II, and Jörnvall, H., 1981. FEBS Lett. 126: 257–260.

    Google Scholar 

  78. 78.

    Jörnvall, H., Fish, W. W. and Björk, I., 1979. FEBS Lett. 106: 358–362.

    Google Scholar 

  79. 79.

    Griffith, M. J. and Lundblad, R. L., 1981. Biochemistry 20: 105–110.

    Google Scholar 

  80. 80.

    Danielsson, A. and Björk, I., 1980. FEBS Lett. 119: 241–244.

    Google Scholar 

  81. 81.

    Stroud, R. M., Krieger, M., Koeppe, R. E., II, Kossiakoff, A. A. and Chambers, J. L., 1975. In: Proteases and Biological Control (Reich, E., Rifkin, D. B. and Shaw, E., eds.) Cold Spring Harbor Conference on Cell Proliferation, Vol. 2, pp. 13–32, Cold Spring Harbor Laboratory, Cold Spring Harbor.

  82. 82.

    Walsh, C., 1979. Ezymatic Reaction Mechanisms. pp. 67–71, 94–97, Freeman, San Francisco.

    Google Scholar 

  83. 83.

    Wallgren, P., Nordling, K. and Björk, I., 1981. Eur. J. Biochem. 116: 493–496.

    Google Scholar 

  84. 84.

    Fish, W. W., Orre, K. and Björk, I., 1979. FEBS Lett. 98: 103–106.

    Google Scholar 

  85. 85.

    Björk, I. and Fish, W.W., 1982. J. Biol. Chem. (in press).

  86. 86.

    Villanueva, G. B. and Danishefsky, I., 1977. Biochem. Biophys. Res. Commun. 74: 803–809.

    Google Scholar 

  87. 87.

    Einarsson, R. and Andersson, L.-O., 1977. Biochim. Biophys. Acta 490: 104–111.

    Google Scholar 

  88. 88.

    Einarsson, R., 1976. Biochim. Biophys. Acta 446: 124–133.

    Google Scholar 

  89. 89.

    Piepkorn, M. W., Lagunoff, D. and Schmer, G., 1978. Biochem. Biophys. Res. Commun. 85: 851–856.

    Google Scholar 

  90. 90.

    Piepkorn, M. W., Lagunoff, D. and Schmer, G., 1980. Arch. Biochem. Biophys. 205: 315–322.

    Google Scholar 

  91. 91.

    Markwardt, F. and Walsman, P., 1959. Hoppe-Seylers Z. Physiol. Chem. 317: 64–77.

    Google Scholar 

  92. 92.

    Gitel, S. N., 1975. In: Heparin. Structure, Function and Clinical Implications (Bradshaw, R. Å. and Wessler, S., eds.) pp. 243–247, Plenum Press, New York.

  93. 93.

    Björk, I. and Nordenman, B., 1976. Eur. J. Biochem. 68: 507–511.

    Google Scholar 

  94. 94.

    Kowalski, S. and Finlay, T. H., 1979. Thromb. Res. 14: 387–397.

    Google Scholar 

  95. 95.

    Carlström, A.-S., Liedén, K. and Björk, I., 1977. Thromb. Res. 11: 785–797.

    Google Scholar 

  96. 96.

    Andersson, L.-O., Engman, L. and Henningsson, E., 1977. J. Immunol. Methods 14: 271–281.

    Google Scholar 

  97. 97.

    Jordan, R., Beeler, D. and Rosenberg, R. D., 1979. J. Biol. Chem. 254: 2902–2913.

    Google Scholar 

  98. 98.

    Lam, L. H., Silbert, J. E. and Rosenberg, R. D., 1976. Biochem. Biophys. Res. Commun. 69: 570–577.

    Google Scholar 

  99. 99.

    Höök, M., Björk, I., Hopwood, J. and Lindahl, U., 1976. FEBS Lett. 66: 90–93.

    Google Scholar 

  100. 100.

    Andersson, L.-O., Barrowcliffe, T. W., Holmer, E., Johnson, E. A. and Sims, G. E. C., 1976. Thromb. Res. 9: 575–583.

    Google Scholar 

  101. 101.

    Nordenman, B. and Björk, I., 1978. Biochemistry 17: 3339–3344.

    Google Scholar 

  102. 102.

    Nordenman, B., Danielsson, Å. and Björk, I., 1978. Eur. J. Biochem. 90: 1–6.

    Google Scholar 

  103. 103.

    Danielsson, Å. and Björk, I., 1978. Eur. J. Biochem. 90: 7–12.

    Google Scholar 

  104. 104.

    Rosenberg, R. D., Jordan, R. E., Favreau, L. V. and Lam, L. H., 1979. Biochem. Biophys. Res. Commun. 86: 1319–1324.

    Google Scholar 

  105. 105.

    Danielsson, Å. and Björk, I., 1981. Biochem. J. 193: 427–433.

    Google Scholar 

  106. 106.

    Radoff, S. and Danishefsky, I., 1981. Thromb. Res. 22: 353–365.

    Google Scholar 

  107. 107.

    Nordenman, B. and Björk, I., 1981. Biochim. Biophys. Acta 672: 227–238.

    Google Scholar 

  108. 108.

    Björk, I. and Nordling, K., 1980. Eur. J. Biochem. 102: 497–502.

    Google Scholar 

  109. 109.

    Blackburn, M. N. and Sibley, C. C., 1980. J. Biol. Chem. 255: 824–826.

    Google Scholar 

  110. 110.

    Villanueva, G. B., Perret, V. and Danishefsky, I., 1980. Arch. Biochem. Biophys. 203: 453–457.

    Google Scholar 

  111. 111.

    Longas, M. O., Ferguson, W. S. and Finlay, T. H., 1980. J. Biol. Chem. 255: 3436–3441.

    Google Scholar 

  112. 112.

    Finlay, T. H. and Ferguson, W. S., 1981. Thromb. Haemostas. 46: 81

    Google Scholar 

  113. 113.

    Olson, S. T. and Shore, J. D., 1981. J. Biol. Chem. 256: 11065–11072.

    Google Scholar 

  114. 114.

    Olson, S. T., Srinivasan, K. R., Björk, I. and Shore, J. D., 1981. J. Biol. Chem. 256: 11073–11079.

    Google Scholar 

  115. 115.

    Rosenberg, R. D., Armand, G. and Lam, L., 1978. Proc. Natl. Acad. Sci. U.S.A. 75: 3065–3069.

    Google Scholar 

  116. 116.

    Lindahl, U., Bäckström, G., Höök, M., Thunberg, L., Fransson, L.-Å. and Linker, A., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 3198–3202.

    Google Scholar 

  117. 117.

    Rosenberg, R. D. and Lam, L., 1979. Proc. Natl. Acad. Sci. U.S.A. 76: 1218–1222.

    Google Scholar 

  118. 118.

    Hopwood, J., Höök, M., Linker, Å. and Lindahl, U., 1976. FEBS Lett. 69: 51–54.

    Google Scholar 

  119. 119.

    Thunberg, L., Bäckström, G., Grundberg, H., Riesenfeld, J. and Lindahl, U., 1980. FEBS Lett. 117: 203–206.

    Google Scholar 

  120. 120.

    Ototani, N. and Yosisawa, Z., 1981. J. Biochem. 90: 1553–1556.

    Google Scholar 

  121. 121.

    Casu, B., Oreste, P., Torri, G., Zopetti, G., Choay, J., Lormeau, J.-C. and Petitou, 1981. Biochem. J. 197: 599–609.

    Google Scholar 

  122. 122.

    Choay, J., Lormeau, J.-C., Petitou, M., Sinaÿ, P., Casu, B., Oreste, P., Torri, G. and Gatti, G., 1980. Thromb. Res. 18: 573–578.

    Google Scholar 

  123. 123.

    Leder, I. G., 1980. Biochem. Biophys. Res. Commun. 94: 1183–1189.

    Google Scholar 

  124. 124.

    Lindahl, U., Bäckström, G., Thunberg, L. and Leder, I. G., 1980. Proc. Natl. Acad. Sci. U.S.A. 77: 6551–6555.

    Google Scholar 

  125. 125.

    Meyer, B., Thunberg, L., Lindahl, U., Larm, O. and Leder, I. G., 1981. Carbohyd. Res. 88: C1-C4.

    Google Scholar 

  126. 126.

    Riesenfeld, J., Thunberg, L., Höök, M. and Lindahl, U., 1981. J. Biol. Chem. 256: 2389–2394.

    Google Scholar 

  127. 127.

    Thunberg, L., Bäckström, G. and Lindahl, U., 1982. Carbohyd. Res. 100: 393–410.

    Google Scholar 

  128. 128.

    Gentry, P. W. and Alexander, B., 1973. Biochem. Biophys. Res. Commun. 50: 500–509.

    Google Scholar 

  129. 129.

    Machovich, R., Blásko, G. and Pálos, L. A., 1975. Biochim. Biophys. Acta 379: 193–200.

    Google Scholar 

  130. 130.

    Danishefsky, I., Tzeng, F., Ahrens, M. and Klein, S., 1976. Thromb. Res. 8: 131–140.

    Google Scholar 

  131. 131.

    Nordenman, B. and Björk, I., 1977. Thromb. Res. 11: 799–808.

    Google Scholar 

  132. 132.

    Nordenman, B. and Björk, I., 1978. Thromb. Res. 12: 755–765.

    Google Scholar 

  133. 133.

    Holmer, E., Söderström, G. and Andersson, L.-O., 1979. Eur. J. Biochem. 93: 1–5.

    Google Scholar 

  134. 134.

    Longas, M. O., Ferguson, W. S. and Finlay, T. H., 1980. Arch. Biochem. Biophys. 200: 595–602.

    Google Scholar 

  135. 135.

    Griffith, M. J., Kingdon, H. S. and Lundblad, R. L., 1978. Biochem. Biophys. Res. Commun. 83: 1198–1205.

    Google Scholar 

  136. 136.

    Nordenman, B. and Björk, I., 1980. Thromb. Res. 19: 711–718.

    Google Scholar 

  137. 137.

    Li, E. H. H., Orton, C. and Feinman, R. D., 1974. Biochemistry 13: 5012–5017.

    Google Scholar 

  138. 138.

    Griffith, M. J., Kingdon, H. S. and Lundblad, R. L., 1979. Arch. Biochem. Biophys. 195: 378–384.

    Google Scholar 

  139. 139.

    Smith, G. F. and Sundboom, J. L., 1981. Thromb. Res. 22: 103–114.

    Google Scholar 

  140. 140.

    Smith, G. F., 1977. Biochem. Biophys. Res. Commun. 77: 111–117.

    Google Scholar 

  141. 141.

    Hatton, M. W. C. and Regoeczi, E., 1977. Thromb. Res. 10: 645–660.

    Google Scholar 

  142. 142.

    Bartl, K., 1978. Thromb. Res. 13: 1141–1142.

    Google Scholar 

  143. 143.

    Griffith, M. J., Kingdon, H. S. and Lundblad, R. L., 1979. Biochem. Biophys. Res. Commun. 87: 686–692.

    Google Scholar 

  144. 144.

    Jordan, R. E., Oosta, G. M., Gardner, W. T. and Rosenberg, R. D., 1980. J. Biol. Chem. 255: 10073–10080.

    Google Scholar 

  145. 145.

    Smith, G. F. and Craft, T. J., 1976. Biochem. Biophys. Res. Commun. 71: 738–745.

    Google Scholar 

  146. 146.

    Stürzebecher, J. and Markwardt, F., 1977. Thromb. Res. 11: 835–846.

    Google Scholar 

  147. 147.

    Griffith, M. J., 1979. J. Biol. Chem. 254: 3401–3406.

    Google Scholar 

  148. 148.

    Laurent, T. C., Tengblad, A., Thunberg, L., Höök, M. and Lindahl, U., 1978. Biochem. J. 175: 691–701.

    Google Scholar 

  149. 149.

    Pomerantz, M. W. and Owen, W. G., 1978. Biochim. Biophys. Acta 535: 66–77.

    Google Scholar 

  150. 150.

    Machovich, R. and Arányi, P., 1978. Biochem. J. 173: 869–875.

    Google Scholar 

  151. 151.

    Li, E. H. H., Fenton, J. W., II, and Feinman, R., 1976. Arch. Biochem. Biophys. 175: 153–159.

    Google Scholar 

  152. 152.

    Jordan, R. E., Oosta, G. M., Gardner, W. T. and Rosenberg, R. D., 1980. J. Biol. Chem. 255: 10081–10090.

    Google Scholar 

  153. 153.

    Machovich, R., 1975. Biochim. Biophys. Acta 412: 13–17.

    Google Scholar 

  154. 154.

    Machovich, R., Staub, M. and Patthy, L., 1978. Eur. J. Biochem. 83: 473–477.

    Google Scholar 

  155. 155.

    Machovich, R., Regoeczi, E. and Hatton, M. W. C., 1980. Thromb. Res. 17: 383–391.

    Google Scholar 

  156. 156.

    Oosta, G. M., Gardner, W. T., Beeler, D. L. and Rosenberg, R. D., 1981. Proc. Natl. Acad. Sci. U.S.A. 78: 829–833.

    Google Scholar 

  157. 157.

    Holmer, E., Lindahl, U., Bäckström, G., Thunberg, L., Sandberg, H., Söderström, G. and Andersson, L.-O., 1980. Thromb. Res. 18: 861–869.

    Google Scholar 

  158. 158.

    Thunberg, L., Lindahl, U., Tengblad, A., Laurent, T. C. and Jackson, C. M., 1979. Biochem. J. 181: 241–243.

    Google Scholar 

  159. 159.

    Holmer, E., Kurachi, K. and Söderström, G., 1981. Biochem. J. 193: 395–400.

    Google Scholar 

  160. 160.

    Yin, E. T., Wessler, S. and Stoll, P. J., 1971. J. Biol. Chem. 246: 3703–3711.

    Google Scholar 

  161. 161.

    Kakkar, V. V., Field, E. S., Nicolaides, A. N., Flute, P. T., Wessler, S. and Yin, E. T., 1971. Lancet 2: 669–671.

    Google Scholar 

  162. 162.

    Wessler, S., 1974. Thromb. Diathes. Haemorrh. 33: 81–86.

    Google Scholar 

  163. 163.

    Gitel, S. N., Stephenson, R. C. and Wessler, S., 1977. Proc. Natl. Acad. Sci. U.S.A. 74: 3028–3032.

    Google Scholar 

  164. 164.

    Thomas, D. P., Merton, R. E., Lewis, W. E. and Barrowcliffe, T. W., 1981. Thromb. Haemostas. 45: 214–218.

    Google Scholar 

  165. 165.

    Carter, C. J., Kelton, J. G., Hirsch, J. and Gent, M., 1981. Thromb. Res. 21: 169–174.

    Google Scholar 

  166. 166.

    Thomas, D. P., Barrowcliffe, T. W., Lindahl, U., Thunberg, L., Merton, R. E., Hiller, K. F. and Eggleton, C. A., 1981. Thromb. Haemostas 46: 185.

    Google Scholar 

  167. 167.

    Holmer, E., Mattsson, C., Nilsson, S., Söderström, G. and Svahn, C.-M., 1981. Thromb. Haemostas. 46: 117.

    Google Scholar 

  168. 168.

    Glimelius, B., Busch, C. and Höök, M., 1978. Thromb. Res. 12: 773–782.

    Google Scholar 

  169. 169.

    Höök, M., Lindahl, U., Hallén, Å. and Bäckström, G., 1975. J. Biol. Chem. 250: 6065–6071.

    Google Scholar 

  170. 170.

    Thunberg, L., Bäckström, G., Wasteson, Å. Robinson, H. C., Ögren, S. and Lindahl, U., 1982. J. Biol. Chem., (in press).

  171. 171.

    Seljelid, R., Bäckström, G. and Lindahl, U., 1980. Exp. Cell. Res. 129: 478–481.

    Google Scholar 

  172. 172.

    Østerud, B., Lindahl, U. and Seljelid, R., 1980. FEBS Lett. 120: 41–43.

    Google Scholar 

  173. 173.

    Østerud, B., Bögwald, J., Lindahl, U. and Seljelid, R., 1981. FEBS Lett. 127: 154–156.

    Google Scholar 

  174. 174.

    Levy, G. A. and Edgington, T. S., 1980. J. Exp. Med. 151: 1232–1244.

    Google Scholar 

  175. 175.

    Geczy, C. L. and Hopper, K. E., 1981. J. Immunol. 126: 1059–1065.

    Google Scholar 

  176. 176.

    Lindahl, U., Kolset, S.O., Bögwald, J., Østerud, B. and Seljelid, R., 1982. Biochem. j., (in press).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Björk, I., Lindahl, U. Mechanism of the anticoagulant action of heparin. Mol Cell Biochem 48, 161–182 (1982). https://doi.org/10.1007/BF00421226

Download citation

Keywords

  • Heparin
  • Oligosaccharide
  • Antithrombin
  • Sulfated Glycosaminoglycan
  • Reactive Bond