Skip to main content
Log in

Physiochemical and immunological properties of acetylcholine receptors from human muscle

  • Original Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

The acetylcholine receptor protein from human muscle was extracted with the non-ionic detergent Triton X-100 and purified by affinity chromatography on α-Naja toxin sepharose 4B. Further purification on Dicap-MP sepharose 4B, a choline analog compound, led to ACHR preparations with specific activities of 2–7 nmol/mg protein. The isolated receptor, labeled with 125I-α-bungarotoxin was characterized by different methods and compared to ACHRs from Torpedo californica electroplax and rat-denervated skeletal muscle. Gel filtration on Ultrogel AcA 34 resulted in a stokes radius of 70 Å for the receptor monomer and 99 Å for the dimeric form. Sucrose density gradient centrifugation showed sedimentation coefficients of 9.1 S and 13.5 S. From these data the molecular weight of the ACHR monomer was estimated as 254 000 D and 540 000 D for the receptor dimer. The isoelectric point of the 125I-α-bgt-ACHR complex was determined by thin-layer isoelectric focussing to be pH 5.

Purified ACHRs were used for immunization of rats and mice which developed an EAMG as verified by clinical observation and electrophysical measurements. Sera from the immunized animals as well as from myasthenia gravis patients were subsequently used to compare the cross-reactivity of ACHR preparations from different sources. While antibodies of rats immunized with Torpedo ACHRs cross-reacted with ACHR preparations from rat and human skeletal muscle, antibodies from mice immunized with rat ACHR only reacted with preparations from rats and mice. Antibodies from mice immunized with ACHR of human origin exhibited a broad cross-reactivity, as did antibodies from MG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AB:

antibody

ACHR:

nicotinic acetylcholine receptor

BSA:

bovine serum albumin

Dicap-MP:

methyl-[N-(6-aminocaproyl-6′aminocaproyl)-3-amino]pyridinbromide

EAMG:

experimental autoimmune myasthenia gravis

EDTA:

ethylenediaminetetraaceticacid

MG:

myasthenia gravis

PMSF:

phenylmethylsulfonylfluoride

References

  1. Lindstrom J: Autoimmune response to acetylcholine receptors in Myasthenia gravis and its animal model. Adv Immunol 27:1–50, 1979.

    Google Scholar 

  2. Drachman DB: Myasthenia gravis. N Engl J Med 298:136–142, 1978.

    Google Scholar 

  3. Aharonov A, Tarrab-Hazdai R, Abramsky O, Fuchs S: Humoral antibodies to acetylcholine receptor in patients with Myasthenia gravis. Lancet 23:340–342, 1976.

    Google Scholar 

  4. Almon RA, Andrew CG, Appel SH: Serum globulin in myasthenia gravis: inhibition of α-bungarotoxin binding to acetylcholine receptors. Science 186:55–57, 1974.

    Google Scholar 

  5. Vincent A: Immunology of acetylcholine receptors in relation to Myasthenia gravis. Physiol Rev 60:756–824, 1980.

    Google Scholar 

  6. Lindstrom J, Campbell M, Nave B: Specificities of antibodies to acetylcholine receptors. Muscle and Nerve 1:140–145, 1978.

    Google Scholar 

  7. Lee CY: Chemistry and pharmacology of polypeptide toxins in snake venoms. Ann Rev Pharmacol 12:265, 1972.

    Google Scholar 

  8. Clark DG, Macmurchie DD, Elliott E, Wolcott RG, Landel AM, Raftery MA: Elapid Neurotoxins, purification characterisation and immunochemical studies of α-bungarotoxin. Biochemistry 11:1663–1668, 1972.

    Google Scholar 

  9. Heidmann T, Changeux JP: Structural and functional properties of the acetylcholine receptor protein in its purified and membrane-bound states. Ann Rev Biochem 47:317–357, 1978.

    Google Scholar 

  10. Froehner SC, Reiness CG, Hall ZW: Subunit structure of the acetylcholine receptor from denervated rat skeletal muscle. J Biol Chem 252:8589–8596, 1977.

    Google Scholar 

  11. Dolly OJ, Barnard EA, Shorr KG: Characterisation of acetylcholine receptor protein from skeletal muscle. Biochem Soc Transactions 5:168–170, 1977.

    Google Scholar 

  12. Stephenson FA, Harrison R, Lunt GG: The isolation and characterisation of the nicotinic acetylcholine receptor from human skeletal muscle. Eur J Biochem 115:91–97, 1981.

    Google Scholar 

  13. Gotti C, Conti-Tronconi BM, Raftery MA: Mammalian muscle acetylcholine receptor purification and characterisation. Biochemistry 21:3148–3154, 1982.

    Google Scholar 

  14. Momoi MY, Lennon VA: Purification and biochemical characterisation of nicotinic acetylcholine receptors of human muscle. J Biol Chem 257:12757–12764, 1982.

    Google Scholar 

  15. Einarson B, Gullick W, Conti-Tronconi B, Ellisman M, Lindstrom J: Subunit composition of bovine muscle acetylcholine receptor. Biochemistry 21:5295–5302, 1982.

    Google Scholar 

  16. Conti-Tronconi BM, Hunkapiller MW, Lindstrom JM, Raftery MA: Subunit structure of the acetylcholine receptor from Electrophorus electricus. Proc Natl Acad Sci USA 79:6489–6493, 1982.

    Google Scholar 

  17. Cooper D, Reich E: Neurotoxin from venom of the cobra Naja naja siamensis. Purification and radioactive labeling. J Biol Chem 247:3008–3013, 1972.

    Google Scholar 

  18. Chang HW: Purification and characterisation of acetylcholine receptor I from Electrophorus electricus. Proc Natl Acad Sci USA 71:2113–2117, 1974.

    Google Scholar 

  19. Rosenberry TL, Chang HW, Chen YT: Purification of acetylcholinesterase by affinity chromatography and determination of active site stoichiometry. J Biol Chem 247:1555–1565, 1972.

    Google Scholar 

  20. Schmidt, J Raftery MA: A simple assay for the study of solubilized acetylcholine receptors. Anal Biochem 52:349–354, 1973.

    Google Scholar 

  21. Spector T: Refinement of the Coomassie blue method of protein quantitation. Anal Biochem 80:142–146, 1978.

    Google Scholar 

  22. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275, 1951.

    Google Scholar 

  23. Brockes JP, Hall ZW: Acetylcholine receptors in normal and denervated rat diaphragma muscle. Biochemistry 14:2092–2099, 1975.

    Google Scholar 

  24. Dolly JO, Barnard EA: Purification and characterisation of an acetylcholine receptor from mammalian skeletal muscle. Biochemistry 16:5053–5060, 1977.

    Google Scholar 

  25. Lien EJ, Ariens EJ, Beld AJ: Quantitative correlations between chemical structure and affinity for acetylcholine receptors. Eur J Pharmacol 35:245–252, 1976.

    Google Scholar 

  26. Schmidt, J, Raftery MA: Purification of acetylcholine receptors from Torpedo californica electroplax by affinity chromatography. Biochemistry 12:852–856, 1973.

    Google Scholar 

  27. Martin RG, Ames BN: A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem 236:1372–1379, 1961.

    Google Scholar 

  28. Kalies I, Kalden JR, Heinz F, Janzen RWCh, Lachenmayer L: Nachweis von Acetylcholin-Rezeptor-Antikörpern im Serum von Myasthenia gravis Patienten unter Verwendung affinitätschromatographisch gereinigter humaner Acetylcholin-Rezeptor-Präparationen. Klin Wochenschr 57:875–881, 1979.

    Google Scholar 

  29. Birnberger KL, Kalies I, Siegel I, Aumeier-Fritz Ch: Neuromuskuläre Übertragung bei Mäusen mit experimentell allergischer Myasthenia gravis: elektrophysiologische und immunologische Analysen. In: Struppler D (ed), Elektrophysiologische Diagnostik in der Neurologie. Thieme-Verlag, Stuttgart, 1982.

    Google Scholar 

  30. Hohlfield R, Kalies I, Heinz F, Kalden JR, Wekerle H: Autoimmune rat T lymphocytes monospecific for acetylcholine receptors: purification and fine specifity. J Immunol 126:1355–1359, 1981.

    Google Scholar 

  31. Oosterhuis HJGH: Studies in myasthenia gravis. Part 1: A clinical study of 180 patients. J Neurol Sci 1:512–546, 1964.

    Google Scholar 

  32. Andrew P: Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J 91:222–233, 1964.

    Google Scholar 

  33. Siegel LM, Monty KJ: Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta 112:346–362, 1966.

    Google Scholar 

  34. Meunier JC, Sealock R, Olsen R, Changeux JP: Purification and properties of the cholinergic receptor protein from Electrophorus electricus electric tissue. Eur J Biochem 45:371–394, 1974.

    Google Scholar 

  35. Hohlfeld R, Sterz R, Kalies I, Peper K, Wekerle H: Neuromuscular transmission in experimental autoimmune Myasthenia gravis (EAMG). Quantitative ionophoresis and current fluctuation analysis at normal and myasthenic rat end-plates. Pflügers Arch 390:156–160, 1981.

    Google Scholar 

  36. Doster W, Hess B, Watters D, Maelicke A: Translational diffusion coefficient and molecular weight of the acetylcholine receptor from Torpedo marmorata. FEBS Lett 113:312–314, 1980.

    Google Scholar 

  37. Raftery MA, Schmidt J, Clark DG: Specificity of a-bungarotoxin binding to Torpedo californica electroplax. Arch Biochem Biophys 152:882–886, 1972.

    Google Scholar 

  38. Cartaud J, Popot JL, Changeux JP: Light and heavy forms of the acetylcholine receptor from Torpedo marmorata electric organ. FEBS Lett 121:327–332, 1980.

    Google Scholar 

  39. Barnard EA, Dolly JO, Lo M, Mantle T: Size and molecular properties of the acetylcholine receptor protein of muscle. Biochem Soc Transact 6:649–651, 1978.

    Google Scholar 

  40. Reynolds JA, Karlin A: Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17: 2035–2038, 1978.

    Google Scholar 

  41. McNamee MG, Weill CL, Karlin A: Purification of acetylcholine receptor from Torpedo californica and its incorporation into phospholipid vesicles. Ann NY Acad Sci 273:175–181, 1975.

    Google Scholar 

  42. Chin RH, Dolly JO, Barnard EA: Solubilisation from skeletal muscle of two components that specifically bind α-bungarotoxin. Biochem Biophys Res. Commun 51:205–213, 1975.

    Google Scholar 

  43. Hucho F, Bandini G, Suárez-Isla BA: The acetylcholine receptor as part of a protein complex in receptor-enriched membrane fragments from Torpedo californica electric tissue. Eur J Biochem 83:335–340, 1978.

    Google Scholar 

  44. Martinez-Carrion M, Sator V, Raftery MA: The molecular weight of an acetylcholine receptor isolated from Torpedo californica. Biochem Biophys Res Commun 65:129–137, 1975.

    Google Scholar 

  45. David GS, Reisfeld RA: Protein iodination with solid state lactoperoxidase. Biochemistry 13:1014–1021, 1974.

    Google Scholar 

  46. Hohlfeld R, Sterz R, Kalies I, Wekerle H, Peper K: Experimental Myasthenia: Lack of correlation between the autoantibody titer and the reduction of acetylcholine-controlled ionic channels measured at functioning endplates. Muscle and Nerve 6:160–163, 1983.

    Google Scholar 

  47. Lindstrom J, Tzartos S, Gullick W: Structure and function of the acetylcholine receptor molecule studied using monoclonal antibodies. Ann NY Acad Sci 377:3–18, 1982.

    Google Scholar 

  48. Nathanson NM, Hall ZW: Subunit structure and peptide mapping of junctional and extrajunctional acetylcholine receptors from rat muscle. Biochemistry 18:3392–3401, 1979.

    Google Scholar 

  49. Tzartos SJ, Lindstrom JM: Monoclonal antibodies used to probe acetylcholine receptor structure: Localisation of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA 77:755–759, 1980.

    Google Scholar 

  50. Dwyer DS, Kearney JF, Bradley RJ, Kemp GE, Oh SJ: Interaction of human antibody and murine monoclonal antibody with muscle acetylcholine receptor. Ann NY Acad Sci 377:143–154, 1981.

    Google Scholar 

  51. Lennon VA, Thompson M, Chen J: Properties of nicotinic acetylcholne receptors isolated by affinity chromatography on monoclonal AB. J Biol Chem 255:4395–4398, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Recipient of a postdoctoral grant from Deutsche Forschungsgemeinschaft; present address: Neurologische Klinik, Medizinische Einrichtungen der Universität Düsseldorf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalies, I., Heinz, F., Hohlfeld, R. et al. Physiochemical and immunological properties of acetylcholine receptors from human muscle. Mol Cell Biochem 64, 69–79 (1984). https://doi.org/10.1007/BF00420930

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420930

Keywords

Navigation