Skip to main content
Log in

Scattering of elastic waves by elastically transparent obstacles (integral-equation method)

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A formulation of elastodynamic diffraction problems for sinusoidally in time varying disturbances in a linearly elastic medium is presented. Starting with the elastodynamic reciprocity relation, an integral representation for the particle displacement is derived. In it, the particle displacement and the traction at the boundary of the obstacle occur. From the integral representation, an associated integral equation is obtained by letting the point of observation approach the boundary of the obstacle. The “obstacle” may be either a rigid body, a void, or a body with elastic properties differing from those of its environment, or a combination of these. The integral equation thus obtained is well-suited for numerical treatment, when obstacles up to a few wavelengths in maximum diameter are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White, R. M., J. Acoust. Soc. Am. 30 (1958) 771.

    Google Scholar 

  2. Ying, C. F. and Rhon Truell, J. Appl. Phys. 27 (1956) 1086.

    Google Scholar 

  3. Einspruch, N. G. and Rhon Truell, J. Acoust. Soc. Am. 32 (1960) 214.

    Google Scholar 

  4. Einspruch, N. G., E. J. Witterholt and Rhon Truell, J. Appl. Phys. 31 (1960) 806.

    Google Scholar 

  5. Kraft, D. W. and M. C. Franzblau, J. Appl. Phys. 42 (1971) 3019.

    Google Scholar 

  6. McBride, R. J. and D. W. Kraft, J. Appl. Phys. 43 (1972) 4853.

    Google Scholar 

  7. Oien, M. A. and Y. H. Pao, Trans. ASME, Ser. E 40 (1973) 1073.

    Google Scholar 

  8. Morse, P. M. and H. Feshbach, Methods in Theoretical Physics, McGraw-Hill Book Company, N.Y., 1953, p. 1759–1791.

    Google Scholar 

  9. Banaugh, R. P., Scattering of Elastic Waves by Surfaces of Arbitrary Shape, Thesis, University of California, Livermore, California (1962). See also: Banaugh, R. P. and W. Goldsmith, Trans. ASME, Ser. E 30 (1963) 589.

    Google Scholar 

  10. Kupradze, V. D., Progress in Solid Mechanics, Vol. III, ed. by I. N. Sneddon and R. Hill, North-Holland Publ. Co., Amsterdam, 1963.

    Google Scholar 

  11. Maue, A.-W., Z. Angew. Math. & Mech. 33 (1953) 1.

    Google Scholar 

  12. De Hoop, A. T., Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, Thesis, Delft University of Technology, the Netherlands (1958) 14.

    Google Scholar 

  13. Achenbach, J. D., Wave Propagation in Elastic Solids, North-Holland Publ. Co., Amsterdam, 1973, Ch. IX.

    Google Scholar 

  14. Miklovitz, J., Appl. Mech. Rev. 13 (1960) 865.

    Google Scholar 

  15. Mason, W. P., Ed., Physical Acoustics, Vol. IA, Academic Press, New York London, 1964, p. 2–109.

    Google Scholar 

  16. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Dover Publications, N.Y., 1944, 4th ed., Ch. XIII.

    Google Scholar 

  17. Auld, B. A., Acoustic Fields and Waves in Solids, Vol. I, John-Wiley & Sons, New York, 1973, p. 45.

    Google Scholar 

  18. Auld, B. A., loc. cit. p. 11.

    Google Scholar 

  19. Boltzmann, L., Ann. der Physik und Chemie. Ergänzungsband 7 (1876) 624.

    Google Scholar 

  20. Nye, J. F., Physical Properties of Crystals, Clarendon Press, Oxford, 1957, Ch. VIII.

    Google Scholar 

  21. Lorentz, H. A., Versl. Kon. Ned. Akad. Wet. Amst. 4 (1896) 176.

    Google Scholar 

  22. Wheeler, L. T. and E. Sternberg, Arch. Rat. Mech. and Analysis 31 (1968) 51.

    Google Scholar 

  23. Kupradze, V. D., loc. cit. p. 9.

    Google Scholar 

  24. De Jong, G., Generation of Acoustic Waves in Piezo-electric devices, Thesis, Delft University of Technology, the Netherlands (1973). See also: De Jong, G., Appl. Sci. Res. 26 (1972) 445.

    Google Scholar 

  25. De Hoop, A. T., Appl. Sci. Res. 16 (1966) 39.

    Google Scholar 

  26. Kupradze, V. D., loc. cit. p. 26.

    Google Scholar 

  27. Tan, T. H., to be published in Appl. Sci. Res.

  28. Neerhoff, F. L., to be published in Proc. R. Soc. Lond. ser. A 342 (1975) 237.

    Google Scholar 

  29. Titchmarch, E. C., Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1948, p. 42.

    Google Scholar 

  30. Eason, G., J. Fulton and I. N. Sneddon, Phil. Trans. A, 248 (1956) 575.

    Google Scholar 

  31. Kupradze, V. D., loc. cit. p. 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research reported in this paper has been supported by the Netherlands organization for the advancement of pure research (Z.W.O.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, T.H. Scattering of elastic waves by elastically transparent obstacles (integral-equation method). Appl. sci. Res. 31, 29–51 (1975). https://doi.org/10.1007/BF00420599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420599

Keywords

Navigation