Skip to main content
Log in

Agronomic and nutritional effects of Linz-Donawitz slag application to two pastures in Northern Spain

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Most grassland soils in western European countries are acidic in their natural state and require a liming material to bring them to their optimum pH. A study was conducted to determine whether Linz-Donawitz (LD) slag, a by-product of the iron and steelmaking industry, could be used as a dolomitic agent for pastures. Six rates of slag (0, 1, 1.5, 3, 5, and 7.5 t ha−1), with and without fertilizer, were investigated for their effects on soil properties, pasture yield and botanical composition, and herbage mineral concentrations. The three-year study was conducted on a newly established pasture of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), and white clover (Trifolium repens L.), and on a resident pasture dominated by Yorkshire fog (Holcus lanatus L.) and browntop (Agrostis tenuis Sibth.). Application of slag increased soil pH (0.15 and 0.11 units per ton of slag applied at Derio and Abadiano, respectively) and decreased Al percentage of the soil complex to levels not considered harmful to plant growth. Exchangeable Ca increased markedly and exchangeable Mg slightly. In general, herbage Ca and Mg concentrations increased accordingly to their increase in the soil, while Fe, Mn, Cu, and Zn decreased with increasing rates of slag. LD slag appears to be a useful liming material for correcting soil acidity in pasture scils, and for increasing Ca and Mg, and decreasing Mn concentrations, in herbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrew C S and Hegarty M P (1969) Comparative responses to managanese excess in eight tropical and four temperate legumes. Aust. J. Agric. Res. 20: 687–696.

    Article  Google Scholar 

  • Bache B W and Ross J A M (1991) Effect of phosphorus and aluminum in the response of spring barley to soil acidity. J Agric Sci Cambridge 117: 299–305.

    Article  CAS  Google Scholar 

  • Crush J R, Evans J P M and Cosgrove G P (1989) Chemical composition of ryegrass (Lolium perenne L.) and prairie grass (Bromus willdenowii Kunth) pastures. N Z J Agric Res 32: 461–468.

    Google Scholar 

  • Curtin D and Smillie GW (1983) Soil solution composition as affected by liming and incubation. Soil Sci Soc Am J 47: 701–707.

    Article  CAS  Google Scholar 

  • Edmeades D C, Judd M and Sarathchandra S V (1981) The effect of lime on nitrogen mineralization as measured by grass growth. Plant and Soil 60: 177–186.

    Article  CAS  Google Scholar 

  • Edmeades D C, Smart C E and Wheeler D M (1983a) Aluminum toxicity in New Zealand soils: Preliminary results on the development of diagnosis criteria. N Z J Agric Res 26:493–501.

    CAS  Google Scholar 

  • Edmeades D C, Rys G, Smart C E and Wheeler D M (1983b) The effects of lime on the chemical composition of ryegrass and white clover grown on a yellow-brown loam. N Z J Agric Res 26: 473–481.

    CAS  Google Scholar 

  • Edmeades D C, Wheeler D M and Waller J E (1985a) Comparison of methods for determining lime requirements of New Zealand soils. N Z J Agric Res 28: 93–100.

    Google Scholar 

  • Edmeades D C, Pringle R M, Shannon P W and Mansell GP (1985b) Optimum pH for grassland soils. pp. 65–67. In: Proceedings of a Workshop on Lime in New Zealand Agriculture. Jackson, BLJ and Edmeades DC (eds). Hamilton, New Zealand.

  • Farquharson B C and Syers J K (1985) Effect of lime on chemical composition of pasture: implications to animal production. sulphate retention and movement in soils. pp 13–14. In BLJ Jackson and DC Edmeades (eds), Proceedings of a Workshop on Lime in New Zealand Agriculture. Hamilton, New Zealand.

    Google Scholar 

  • Formoso A, López F A, Medina F, and Trueba C (1991) Agronomic use of LD Slag. ECSC Technical Report, No. 4. Convention 7210-XA/931. CENIM, Madrid, Spain.

    Google Scholar 

  • Geiseler J (1991) Untersuchungen zur Eignung grobkörniger Hochofen und Stahlwerksschlacken als Düngemittel für die Land-und Forstwirtschaft. ECSC Technischer Zwischenbericht, Nr. 6. Convention 7210-XA/110. Forschungsgemeinschaf Eisenhüttenschlacken. Duisburg, Germany.

    Google Scholar 

  • Helyar K R (1978) Effects of Al and Mn toxicity on legume growth. In: CS Andrew and E.J. Kamprath (ed.). Mineral nutrition in tropical and subtropical soils. CSIRO. Melbourne, Australia.

    Google Scholar 

  • Helyar K R and Anderson A J (1974) Effects of calcium carbonate on the availability of nutrients in an acid soil. Soil Sci Soc Am Proc 38: 341–345.

    Article  CAS  Google Scholar 

  • IHOBE (1994) Nivel de referencia. pp 19–36. In: Calidad del suelo. Valores indicativos de evaluación. Gobierno Vasco, Vitoria, Spain.

    Google Scholar 

  • Jackson W A (1967) Physiological effects of soil acidity. In RW Pearson and F Adams (eds), Soil acidity and liming. 1st ed. Agron. Monogr. 12. ASA, Madison, Wisconsin.

    Google Scholar 

  • Kamprath E J (1970) Exchangeable aluminium as a criterion for liming leached mineral soils. Soil Sci. Soc. Amer. Proc. 34:252–254.

    Article  CAS  Google Scholar 

  • Kondo R, Daiman M, Song C T and Jiwath S (1990) Effect of lime on the hydration of supersulphated slag cement. Ceramic Bulletin 59:848–851.

    Google Scholar 

  • Krug F J, Zagatto E A G, Reis B K, Bahia O, Jacintho A O and Jorgensen S S (1983) Turbidimetric determination of sulphate in plant digests and natural waters by flow injection analysis with alternating streams. Anal Chim Acta 145: 179–187.

    Article  CAS  Google Scholar 

  • MAFF (1981) The analysis of agricultural materials (RB427). Ministry of Agriculture, Fisheries and Food. London, UK.

    Google Scholar 

  • Mansell G P, Pringle R M, Edmeades D C and Shannon P W (1984) Effects of lime on pasture production on soils in the North Island of New Zealand. 3. Interaction of lime with phosphorus. N Z J Agric Res 27: 363–369.

    CAS  Google Scholar 

  • Mombiela F A and Mateo M E (1984) Necesidades de cal para praderas en terrenos “a monte”. I. Su relación con el Al cambiable en suelos sobre granitos y pizarras de Galicia. Anales INIA. Serie Agrícola 25: 129–143.

    CAS  Google Scholar 

  • Mosquera A C (1987) Transformación de tierras de monte gallego en praderas permanentes: Dosis óptimas de cal para establecimiento y mantenimiento. Ph.D. Thesis. Universidad de Santiago de Compostela. Santiago de Compostela, Spain.

  • Myers J S, McLean E O and Bigham J M (1988) Reductions in exchangeable magnesium with liming of acid Ohio soils. Soil Sci Soc Am J 52:131–136.

    Article  CAS  Google Scholar 

  • Pinto M, Rodríguez M, Besga G, Balcázar N and López F A (1995) Effects of Linz-Donawitz (LD) slag on soil properties and pasture production in the Basque Country (northern Spain). N Z J Agric Res 38: 147–159.

    Google Scholar 

  • Rainbott T M and Blevins D G (1991) Phosphate interaction with uptake and leaf concentration of magnesium, calcium and potassium in winter wheat seedlings. Agron J 83: 1043–1046.

    Article  Google Scholar 

  • Reneau R B, Jones G D and Friedericks J B (1983) Effect of P and K on yield and chemical composition of forage shorgum. Agron J 75: 5–8.

    Article  Google Scholar 

  • Rodríguez M, Besga G and Oyanarte M (1991) Efecto de la fertilización fosfórica y potásica en el equilibrio de una mezcla de raigrás inglés y trébol blanco. pp. 269–273. In: Proc. of the XXXI Reunión Científica de la Sociedad Española para el Estudio de los Pastos. Murcia, Spain.

  • Sarathehandra S V and Edmeades D C (1985) Effect of lime on nitrogen mineralisation and microbiological activity in soil. pp 40–42. In: B L J Jackson and DC Edmeades (eds), Proceedings of a Workshop on Lime in New Zealand Agriculture, Hamilton, New Zealand.

  • SAS Institute (1988) The GLM procedure. In: SAS User's guide: Statisties. Version 6 SAS Inst. Cary, North Carolina.

    Google Scholar 

  • Smillie G W, Curtin D and Syers J K (1987) Influence of exchangeable calcium on phosphate retention by weakly acid soils. Soil Sci Soc Am J 51: 1169–1172.

    Article  CAS  Google Scholar 

  • Smith F W (1988) Pasture species. In: DJ Reuter, and JB Robinson (eds). Plant Analysis. An interpretation manual. Inkata Press. Melbourne, Australia.

    Google Scholar 

  • Syers J K, Tillman R W, and Marsh K B (1985) Effect of lime on sulphate retention and movement in soils. pp. 55–57. In: BLJ Jackson and DC Edmeades (eds), Proceedings of a Workshop on Lime in New Zealand Agriculture, Hamilton, New Zealand.

  • Whitehead D, Barnes R J, and Jones L H (1983) Nitrogen, sulphur, and other mineral elements in white clover and perennial ryegrass in mixed swards with and without fertilizer N at a range of sites in the U.K. J. Sci. Food Agric. 34:901–909.

    Article  CAS  Google Scholar 

  • Williams W M (1988) Adaptive variation. pp. 299–322. In: White clover. MJ Baker and WM Williams (eds). CAB International, Wallingford, Oxon, United Kingdom.

    Google Scholar 

  • Zasosky R J and Burau R G (1977) A rapid nitric-perchloric acid digestion method for multielement tissue analysis. Commun Soil Sci Plant Anal 8:425–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besga, G., Pinto, M., Rodríguez, M. et al. Agronomic and nutritional effects of Linz-Donawitz slag application to two pastures in Northern Spain. Nutr Cycl Agroecosyst 46, 157–167 (1996). https://doi.org/10.1007/BF00420550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420550

Key words

Navigation