Skip to main content
Log in

Comparative electrophoretic properties of histones from cells of the mosquito Aedes aegypti and of the fruitfly Drosophila melanogaster

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Electrophoretic mobility of histones from cell cultures of Drosophila melanogaster and of the mosquito Aedes aegypti was determined in polyacrylamide gels in the presence of different concentrations of urea. Great similarity in the electrophoretic behavior of H3, H2A, H2B and H4 histones from the two insect species was found. Histone H1 of Aedes under all conditions tested had a markedly higher electrophoretic mobility than H1 of Drosophila, but differed only slightly from H1 histones of mouse and of hamster.

As can be deduced from the mobility of Aedes H1 in the presence of sodium dodecyl sulphate its molecular weight is smaller than that of Drosophila H1 and is very close to the molecular weight of the main component of mouse H1 histone. Heterogeneity of the H1 histone from Drosophila is demonstrated. This heterogeneity is due to phosphorylation of a part of H1 molecules, since it disappears after the treatment of H1 preparations by alkaline phosphatase. Phosphorylated components were not found in the H1 of Aedes.

Thus two representatives of Diptera, Aedes and Drosophila possessing polytene chromosomes at the larval stage of development have H1 histones with markedly different primary structures. This pact demonstrates that the polytenization of chromosomes may occur in species with markedly different H1 histones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ElginS. C. R. and WeintraubH., Ann. Rev. Biochem 44, 725 (1975).

    Google Scholar 

  2. PanyimS., BilekD., and ChalkleyR., J. Biol. Chem. 246, 4206 (1971).

    Google Scholar 

  3. PanyimS. and ChalkleyR., J. Biol. Chem. 246, 7557 (1971).

    Google Scholar 

  4. KinkadeJ. M.Jr. and ColeR. D., J. Biol. Chem. 241, 5790 (1966).

    Google Scholar 

  5. KinkadeJ. M.Jr. and ColeR. D., J. Biol. Chem. 241, 5798 (1966).

    Google Scholar 

  6. KinkadeJ. M., J. Biol. Chem. 244, 3375 (1969).

    Google Scholar 

  7. BustinM. and ColeR. D., J. Biol. Chem. 243, 4500 (1968).

    Google Scholar 

  8. BustinM. and ColeR. D., J. Biol. Chem. 244, 5286 (1969).

    Google Scholar 

  9. LanganT. A., RallS. C., and ColeR. D., J. Biol. Chem. 246, 1942 (1971).

    Google Scholar 

  10. BustinM. and StollarB. D., J. Biol. Chem. 248, 3506 (1973).

    Google Scholar 

  11. BustinM. and ColeR. D., J. Biol. Chem. 244, 5291 (1969).

    Google Scholar 

  12. RallS. C. and ColeR. D., J. Biol. Chem. 246, 7175 (1971).

    Google Scholar 

  13. SherodD., JohnsonG. and ChalkleyR., J. Biol. Chem. 249, 3923 (1974).

    Google Scholar 

  14. JonesG. M. T., RallS. C. and ColeR. D., J. Biol. Chem. 249, 2548 (1974).

    Google Scholar 

  15. StricklandW. N., SchallerH., StricklandM. and VonHoltC., FEBS Letters 66, 322 (1976).

    Google Scholar 

  16. CohenL. H. and GotchelB. V., J. Biol. Chem. 246, 1841 (1971).

    Google Scholar 

  17. OliverD. and ChalkleyR., Exp. Cell Res. 73, 295 (1972).

    Google Scholar 

  18. OliverD. and ChalkleyR., Exp. Cell Res. 73, 303 (1972).

    Google Scholar 

  19. FrancoL., MonteroF., NavletJ. M., PereraJ. and RojoM. C., Eur. J. Biochem. 48, 53 (1974).

    Google Scholar 

  20. AlfagemeC. R., ZweidlerA., MahowaldA., and CohenL. H., J. Biol. Chem. 249, 3729 (1974).

    Google Scholar 

  21. HolmgrenP., RasmusonB., JohanssonT., and SundquistG., Chromosoma 54, 99 (1976).

    Google Scholar 

  22. SubiranaJ. A., PalauJ., CozcolluelaC., and Ruiz-CarrilloA., Nature 228, 992 (1970).

    Google Scholar 

  23. SmithE. L., DeLangeR. J., and BonnerJ., Physiol. Rev. 50, 159 (1970).

    Google Scholar 

  24. PolukarovaL. G., KakpakovV. T., and GvozdevV. A., Genetica, USSR XI, No. 5, 46 (1975).

    Google Scholar 

  25. PanyimS. and ChalkleyR., Arch. Biochem. Biophys. 130, 337 (1969).

    Google Scholar 

  26. PanyimS. and ChalkleyR., Biochemistry 8, 3972 (1969).

    Google Scholar 

  27. SchaffnerW. and WeissmannC., Anal. Biochem. 56, 502 (1973).

    Google Scholar 

  28. McMaster-KayeR. and KayeJ. S., Arch. Biochem. Biophys. 156, 426 (1973).

    Google Scholar 

  29. SherodD., JohnsonG., and ChalkleyR., Biochemistry 9, 4611 (1970).

    Google Scholar 

  30. CohenL. H., NewrockK. M., and ZweidlerA., Science 190, 994 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

at Moscow

at Nijmegen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanova, E.S. Comparative electrophoretic properties of histones from cells of the mosquito Aedes aegypti and of the fruitfly Drosophila melanogaster. Mol Biol Rep 3, 361–369 (1977). https://doi.org/10.1007/BF00420395

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420395

Keywords

Navigation