Letters in Mathematical Physics

, Volume 14, Issue 2, pp 177–184 | Cite as

On metrics and super-Riemann surfaces

  • Luke Hodgkin


It is shown that any super-Riemann surface M admits a large space of metrics (in a rather basic sense); while if M is of compact genus g type, g>1, M admits a unique metric whose lift to the universal cover is superconformally equivalent to the standard (Baranov-Shvarts) metric on the super-half plane. This explains the relation between the different methods of calculation of the upper Teichmüller space by the author (using arbitrary superconformal transformations) and Crane and Rabin (using only isometries).


Statistical Physic Group Theory Universal Cover Large Space Basic Sense 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hodgkin, L., A direct calculation of super-Teichmüller space, Lett. Math. Phys. 14, 47–53 (1987).Google Scholar
  2. 2.
    Crane, L. and Rabin, J. M., Super Riemann surfaces: uniformization and Teichmüller theory, University of Chicago preprint No. EFI 86-25 (1986).Google Scholar
  3. 3.
    De Witt, B. S., Supermanifolds, Cambridge U.P., 1984.Google Scholar
  4. 4.
    Baranov, M. A. and Shvarts, A. S., Multiloop contribution to string theory, ZhETF Pis 42, 340–342 (1985) (= JETP Letters 42, 419–421 (1985)).Google Scholar
  5. 5.
    Batchelor, M., Graded manifolds and supermanifolds, in H. J.Seifert, C. J. S.Clarke and A.Rosenblum (eds.), Mathematical Aspects of Superspace, D. Reidel, Dordrecht, 1983, pp. 91–133.Google Scholar
  6. 6.
    Jadzyk, A. and Pilch, K., Superspaces and supersymmetry, Commun. Math. Phys. 78, 373–390 (1981).Google Scholar
  7. 7.
    Arvis, J. F., Classical dynamics of the supersymmetric Liouville theory, Nucl. Phys. B. 212, 151–172 (1983).Google Scholar
  8. 8.
    An isomorphism of the required groups is proved by G. Shimura (e.g., Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami Shoten and Princeton, 1971, p. 234).Google Scholar
  9. 9.
    Earle, C. J., in W. J.Harvey (ed.), Discrete Groups and Automorphic Functions, Academic Press, London, 1977.Google Scholar
  10. 10.
    Hörmander, L., Linear Partial Differential Operators (Die Grundlehren des mathematischen Wissenschaften, Bd. 116), Springer-Verlag, Berlin, Heidelberg, New York, 1963, chapter X.Google Scholar
  11. 11.
    Dolbeault, P., Formes différentielles, et cohomologie sur une variété analytique complexe I, II, Ann. Math. 64, 83–130 (1956) and 65, 282–330 (1957).Google Scholar
  12. 12.
    Gunning, R. C., Lectures on Riemann Surfaces, Princeton, 1965, p. 111.Google Scholar
  13. 13.
    Gunning, R. C., Lectures on Vector Bundles over Riemann Surfaces, Princeton, 1967, p. 133.Google Scholar
  14. 14.
    Lehner, J., A Short Course in Automorphic Functions, Holt, Rinehart and Winston, New York, 1966.Google Scholar
  15. 15.
    Godement, R., Topologic algébrique et théorie des faisceaux, Hermann, Paris, 1958. Also ref. [12], p. 186.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Luke Hodgkin
    • 1
  1. 1.Department of Mathematics, King's CollegeUniversity of LondonLondonU.K.

Personalised recommendations