Letters in Mathematical Physics

, Volume 14, Issue 2, pp 133–138 | Cite as

Remarks on the problem of lifting spacetime symmetries

  • Gerd Rudolph


The problem of lifting the action of a symmetry group K on spacetime M to automorphisms of a principal bundle P(M, G) is discussed. A classification of bundles P admitting a lift is given for a case more general than that considered by Harnad, Shnider, and Vinet.


Statistical Physic Group Theory Symmetry Group Principal Bundle Spacetime Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Witten, E., Phys. Rev. Lett. 38, 121–124 (1977).Google Scholar
  2. 2.
    Schwarz, A. S., Commun. Math. Phys. 56, 79–86 (1977).Google Scholar
  3. 3.
    Forgacs, P. and Manton, N. S., Commun. Math. Phys. 72, 15–34 (1980).Google Scholar
  4. 4.
    Trautman, A., Lectures at XX. Universitätswochen für Kernphysik (Schladming), Acta Phys. Austr., Suppl. 23, 401–432 (1981).Google Scholar
  5. 5.
    Henneaux, M., J. Math. Phys. 23 (5), 830–833 (1982).Google Scholar
  6. 6.
    Horvathy, P. A. and Rawnsley, J. H., Fibre bundles, monopoles and internal symmetries. Preprint CPT-85/P.1750, Marseille, 1985.Google Scholar
  7. 7.
    Horvathy, P. A. and Rawnsley, J. H., Phys. Rev. D32, 968 (1985).Google Scholar
  8. 8.
    Jadczyk, A. Z., J. Geom. Phys. 1, 97–126 (1984).Google Scholar
  9. 9.
    Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry, Vol. 1, Interscience, New York, London, 1963.Google Scholar
  10. 10.
    Bredon, G. E., Introduction to Compact Transformation Groups, Academic Press, New York, London, 1982.Google Scholar
  11. 11.
    Harnad, J., Shnider, S., and Vinet, L., J. Math. Phys. 21 (12), 2719–2724 (1980).Google Scholar
  12. 12.
    Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.Google Scholar
  13. 13.
    Harnad, J., Shnider, S., and Tafel, J., Lett. Math. Phys. 4, 107–113 (1980).Google Scholar
  14. 14.
    Rudolph, G. and Volobujev, I., Proc. Conf. Diff. Geom. and its Appl., Nové Město, 1983.Google Scholar
  15. 15.
    Rudolph, G. and Volobujev, I., Theor. Math. Phys. 62 (3), 388–399 (1985).Google Scholar
  16. 16.
    Jadczyk, A. Z. and Pilch, K., Lett. Math. Phys. 8, 97–104 (1984).Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Gerd Rudolph
    • 1
  1. 1.Sektion Physik und Naturwissenschaftlich-Theoretisches Zentrum der Karl-MarxUniversität LeipzigLeipzigD.D.R.

Personalised recommendations