Skip to main content
Log in

Multistage functional system amplifying and spreading the effect of estradiol in rat uterus

  • General Articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Estradiol is demonstrated to induce histidine decarboxylase, and histamine is shown to activate adenylate cyclase in rat uterus. Histamine and cyclic 3′,5′-AMP mimic the effects of estradiol in that they enhance RNA synthesis, induce glycolytic enzymes and uterus imbibition. The data suggest that estradiol enhances by induction of histidine decarboxylase the formation of histamine, the latter activates adenylate cyclase providing accumulation of cyclic 3′,5′-AMP, which, probably, induces glycolytic enzymes through phosphorylation of chromatin proteins, and mediates other estradiol effects. The chain of successively acting enzymes and mediators constitutes, obviously, a cascade amplifying estradiol action. Since histamine is known to act as an intercellular mediator, attempts were made to find out the distribution of estradiol histamine and cyclic 3′,5′-AMP among uterus cells. Autoradiography has shown that [3H]-estradiol is bound by the nuclei of myometrium cells, [3H]-histamine was found above the cytoplasm of these cells, [3H]-cyclic 3′,5′-AMP is selectively bound by the cells of capillary endothelium of the uterus. The estradiol mediators seem to spread effect of hormone on cells of different types which form together a kind of multicellular functional system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hechter, O., Yoshinaga, K., Halherston, J. D. K. and Birchall, 1967. Arch. Bioch. Biophys., 122, 449–465.

    Google Scholar 

  2. Singhal, R. L., 1973. Adv. in Pharmacol. and Chemother., New-York-London, 11, 99–150.

    Google Scholar 

  3. Szego, C., 1965. Fed. Proc., 6, 1343–1352.

    Google Scholar 

  4. Salganik, R. I., Bersimbaev, R. I. Argutinskaya, S. V., Kiseleva, E. V., Khristolyubova, N. B. and Deribas, V. I., 1976. Mol. Cell. Biochem. 12, 181–191.

    Google Scholar 

  5. Hamilton, T. H., Widnell, C. C. and Tata, Y. R., 1968. J. Biol; Chem., 243, 408–417.

    Google Scholar 

  6. Singhal, R. L. and Valadares, J. R. E., 1970. Amer. J. Physiol., 218, 321–327.

    Google Scholar 

  7. Valadares, J. R. E., Singhal, R. L. and Parulecar, M. R., 1968. Science, 159, 990–991.

    Google Scholar 

  8. Schayer, R. W., Rothschild, Z. and Bizony, P., 1959. Amer. J. Physiol., 196, 295–298.

    Google Scholar 

  9. Krishna, Y., Weiss, B. and Brody, B. B., 1968. J. Pharm and Exp. Ther., 163, 379–385.

    Google Scholar 

  10. Dishe, L. and Rosenfeld, E., 1957. Bioch. Bioph. Acta. 23, 669.

    Google Scholar 

  11. Clarc, R. B. and Perkins, G. P., 1971. Proc. Natl. Acad. Sci. USA, 68, 2757–2760.

    Google Scholar 

  12. Lindl, T. and Cramer, H., 1974. Biochim. Biophys. Acta, 343, 182–191.

    Google Scholar 

  13. Palmer, G. C. 1971. Biochim. Biophys. Acta, 252, 561–566.

    Google Scholar 

  14. Cohen, M. E. and Kleinsmith, L. J., 1976. Biochim. Biophys. Acta, 435, 159–166.

    Google Scholar 

  15. Goodman, D. B. R., Bloom, F. E., Battenberg, E. R., Rasmussen, H. and Davis, W. L., 1975. Science, 188, 1023–1025.

    Google Scholar 

  16. Stumpf, W. E., 1968, Endocrinology, 83, 777.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salganik, R.I., Pankova, T.G., Deribas, V.I. et al. Multistage functional system amplifying and spreading the effect of estradiol in rat uterus. Mol Cell Biochem 29, 183–188 (1980). https://doi.org/10.1007/BF00420289

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420289

Keywords

Navigation