Molecular Engineering

, Volume 1, Issue 2, pp 153–160 | Cite as

A structural and pharmacological study of alkaloids of Vinca Minor

  • Yves G. Smeyers
  • Nadine J. Smeyers
  • Juan J. Randez
  • A. Hernandez-Laguna
  • E. Galvez-Ruano


The three-dimensional structures of five indole alkaloids of Vinca (Vincamine, Vincamone, Apovincamine, Vincaminol, and Desoxyvincaminol) are determined theoretically and compared with the available experimental data. The main frame of all these compounds presents a similar structure: planar for the indole moiety, and pan-shaped centered on the C-3 atom for the second moiety. From this central atom a particularly active hydrogen atom points downwards. The main structural parameters obtained theoretically are compared with biological activities (arterial blood flow in brain). Some possible active centers, however, are proposed.

Key words

Alkaloids of Vinca Minor three-dimensional structure determination quantum mechanical AM1 calculations QSAR study 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Tamayo: Vademecum International, DAIMON (1990).Google Scholar
  2. 2.
    M. Yougui-Massok: Médecine Praticienne 571, 118 (1972).Google Scholar
  3. 3.
    P.Lacroix, Ph.Linée, and J.-B.LePolles: Gaz. Médical de France 87, 1497 (1980).Google Scholar
  4. 4.
    M. Gueguen, B. Genetet, F.Durand, J. Cherpi, J. Van den Driessche, Ph. Linée, and J.-B. LePolles: Praticien 376, 57 (1981).Google Scholar
  5. 5.
    M. Autrosseau, M. Dupont, C. Rondeaux, and J. C. Rondeaux: Chimie Thérapeutique 3, 235 (1972).Google Scholar
  6. 6.
    A. Quevalier and O. Blanpin: Pathol. Biologie 34, 1481 (1958).Google Scholar
  7. 7.
    M. Plat, D. Dohkag-Manh, J. Le Men, M. M. Janot, H. Budziekiewcs, J. M. Wilson, L. J. Durham, and C. Djerassi: Bull. Soc. Chim. France, 1082 (1962).Google Scholar
  8. 8.
    E. Bombardelli, A. Bonati, B. Gambetta, E. M. Martinelli, G. Mustich, and B. Danieli; Fitoterapia 2, 51 (1975).Google Scholar
  9. 9.
    S.Crasso, A.Chimirri, and A.Gliaoti: Boll. Chim. Farm. 120, 689 (1981).Google Scholar
  10. 10.
    A.Chimirri, S.Grasso, G.Fenech, and P.Monforte: J. Heterocyclic Chem. 20, 173 (1983).Google Scholar
  11. 11.
    G. Toth, Cs. Szantay Jr., L. Szabó, K. Nogradi, G. Kalaus, and Cs. Szantay: J. Soc. Chem. Perkin Trans. II, 1319 (1985).Google Scholar
  12. 12.
    J.Sapi, L.Szabó, E.Baitz-Gacs, G.Kalaus, and Cs.Szantay: Tetraedron 44, 4619 (1988).Google Scholar
  13. 13.
    H. P. Weber and T. J. Petcher, J. Soc. Chem. Perkins Trans II, 2002 (1973).Google Scholar
  14. 14.
    G.Palmisano, B.Gabetta, G.Lesma, T.Pilati, and L.Toma, J. Org. Chem. 55, 2182 (1990).Google Scholar
  15. 15.
    M. J. S.Dewar, E. G.Zoebisch, E. F.Healy, and J. J. P.Stewart, J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
  16. 16.
    M.Esseffar, M. ElMoutadi, and Y. G.Smeyers, J. Mol. Struct. (Theochem.) 208, 179 (1990).Google Scholar
  17. 17.
    R.Fletcher and M. J. D.Powell, J. Computer, 6, 63 (1963); W. C. Davidon, Comp. J. 10, 406 (1968).Google Scholar
  18. 18.
    PLUTO88, Cambridge Structural Data Base System, Cambridge Crystallographic Data Center, 1988.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Yves G. Smeyers
    • 1
  • Nadine J. Smeyers
    • 2
  • Juan J. Randez
    • 1
  • A. Hernandez-Laguna
    • 1
  • E. Galvez-Ruano
    • 2
  1. 1.Instituto de Estructura de la MateriaCSICMadridSpain
  2. 2.Departamento de Química OrgánicaUniversidad de Alcalá de HenaresAlcaláde HenaresSpain

Personalised recommendations