Skip to main content
Log in

On the structure dependence of the static longitudinal linear electric polarizability of infinite polyenes: An ab-initio uncoupled perturbed Hartree-Fock crystal orbital study

  • Published:
Molecular Engineering

Abstract

The static longitudinal linear electric polarizability, α, has been computed for several values of the bond alternation parameter, Δr, for infinite polyene (trans-polyacetylene) chains using the ab initio uncoupled perturbed Hartree-Fock (UPHF) crystal orbital method with different atomic basis sets. The computed values of α(UPHF) were found to increase by a factor of 5–6 with decreasing bond alternation, exhibiting typical values of about 2–300 a.u. in the neighborhood of Δr optimized for alternating (trans-polyacetylene). Cluster calculations have also been performed for the polyene series H−(C2H2) n −H, n=3–10, using both the UPHF and the coupled perturbed Hartree-Fock (CPHF) methods, respectively. Since the geometrical skeleton of these clusters was built from the structural parameters of the corresponding infinite polyacetylenes, their properties, as extrapolated to the limit n→∞, provided a possibility for comparing the performance of the UPHF and CPHF methods, respectively, in the case of the infinite systems. It turned out that the α(UPHF) values, which amount to about 80% of the corresponding α(CPHF) results for shorter polyenes, recover less than 40% of the polarization for infinite chains, pointing thus to the necessity of an improved description of electron rearrangement processes in polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S.Chemla and J.Zyss (eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York (1987).

    Google Scholar 

  2. J.Messier, F.Kajzar, P.Prasad, and D.Ulrich (eds.), Nonlinear Optical Effects in Organic Polymers, Kluwer Academic Publishers, Dordrecht (1989).

    Google Scholar 

  3. G. E.Schulz and R. H.Schirmer, Principles of Protein Structure, Springer Verlag, Berlin (1979).

    Google Scholar 

  4. M.Sinclair, D.Moses, A. J.Heeger, K.Vilhelsson, B.Valk, and M.Salour, Solid State Comm. 61, 221 (1987).

    Google Scholar 

  5. A. J.Heeger, D.Moses, and M.Sinclair, Synth. Met. 17, 343 (1987).

    Google Scholar 

  6. G. J. B.Hurst, M.Dupuis, and E.Clementi, J. Chem. Phys. 89, 385 (1988).

    Google Scholar 

  7. V. P.Bodart, J.Delhalle, J.-M.André, and J.Zyss, in D.Bloor and R. R.Chance (eds.), Polydiacetylenes, Martinus Nijhoff Publishers, Dordrecht, 125 (1985).

    Google Scholar 

  8. V. P.Bodart, J.Delhalle, J.-M.André, and J.Zyss, Can. J. Chem. 63, 1631 (1985).

    Google Scholar 

  9. C.Barbier and J.-M.André, Theor. Chim. Acta 72, 363 (1987).

    Google Scholar 

  10. J.Delhalle, B.Champagne, M.Dory, J. G.Fripiat, and J.-M.André, Bull. Soc. Chim. Belg. 98, 811 (1989).

    Google Scholar 

  11. B.Kirtman, Chem. Phys. Lett. 3, 81 (1988).

    Google Scholar 

  12. G. P.deMelo and R.Silbey, J. Chem. Phys. 88, 2558 (1988).

    Google Scholar 

  13. V. N.Genkin and P. M.Mednis, Soviet Phys. JETP 27, 609 (1968).

    Google Scholar 

  14. C.Cojan, G. P.Agrawal, and C.Flytzanis, Phys. Rev. B15, 909 (1977).

    Google Scholar 

  15. G. P.Agrawal, C.Cojan, and C.Flytzanis, Phys. Rev. B17, 776 (1978).

    Google Scholar 

  16. C.Barbier, J.Delhalle, and J.-M.André, J. Mol. Struct. (Theochem) 188, 299 (1989).

    Google Scholar 

  17. J.Ladik, J. Mol. Struct. (Theochem) 206, 39 (1990).

    Google Scholar 

  18. C.Barbier, Chem. Phys. Lett. 142, 53 (1987).

    Google Scholar 

  19. C.Barbier, J.Delhalle, and J.-M.André, Mat. Res. Symp. Proc. 109, 143 (1988).

    Google Scholar 

  20. S.Suhai, in J.Maruani (ed.), Molecules in Physics, Chemistry, and Biology, Vol. IV, Kluwer Academic Publishers, Dordrecht, 133 (1988).

    Google Scholar 

  21. S.Suhai, Phys. Rev. B27, 3506 (1983).

    Google Scholar 

  22. S.Suhai, Phys. Rev. B29, 4570 (1984).

    Google Scholar 

  23. S.Suhai, Int. J. Quant. Chem. 24, 469 (1986).

    Google Scholar 

  24. S.Suhai, J. Chem. Phys. 85, 611 (1986).

    Google Scholar 

  25. H. D.Cohen and C. C. J.Roothaan, J. Chem. Phys. 41, 534 (1965).

    Google Scholar 

  26. J. N.Churchill and F. E.Holmstrom, Physica B (Amsterdam) 123, 1 (1983).

    Google Scholar 

  27. G.DelRe, J.Ladik, and G.Biczó, Phys. Rev. 155, 967 (1967).

    Google Scholar 

  28. J.-M.André, L.Gouverneur, and G.Leroy, Int. J. Quantum Chemistry 1, 427, 451 (1967).

    Google Scholar 

  29. W. J.Hehre, R. F.Stewart, and J. A.Pople, J. Chem. Phys. 51, 2657 (1969).

    Google Scholar 

  30. W. J.Hehre, R.Ditchfield, and J. A.Pople, J. Chem. Phys. 56, 2257 (1972).

    Google Scholar 

  31. C.deBoor, A Practical Guide to Splines, Springer, New York (1978).

    Google Scholar 

  32. C.Møller and M. S.Plesset, Phys. Rev. 46, 618 (1934).

    Google Scholar 

  33. S.Suhai, Chem. Phys. Lett. 96, 619 (1983).

    Google Scholar 

  34. M. J.Frisch, M.Head-Gordon, H. B.Schlegel, K.Raghavachari, C. J. S.Binkley, Gonzalez, D. J.Defrees, D. J.Fox, R. A.Whiteside, R.Seeger, C. F.Melius, J.Baker, R.Martin, L. R.Kahn, J. J. P.Stewart, E. M.Fluder, S.Topiol, and J. A.Pople, Gaussian 88, Gaussian, Inc., Pittsburgh, PA (1988).

    Google Scholar 

  35. H. O.Villar, M.Dupuis, J. D.Watts, G. J. B.Hurst, and E.Clementi, J. Chem. Phys. 88, 1003 (1988).

    Google Scholar 

  36. H. O.Villar, M.Dupuis, and E.Clementi, Phys. Rev. B37, 2520 (1988).

    Google Scholar 

  37. Handbook of Chemistry and Physics, 66th ed., ed. by R. C.West, M. J.Astle, and W. H.Beyer, CRC, Boca Raton, p. E-70 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suhai, S. On the structure dependence of the static longitudinal linear electric polarizability of infinite polyenes: An ab-initio uncoupled perturbed Hartree-Fock crystal orbital study. Mol Eng 1, 115–129 (1991). https://doi.org/10.1007/BF00420048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420048

Key words

Navigation