Advertisement

Prolonged action potentials and regenerative hyperpolarizing responses in Purkinje fibers of mammalian heart

  • Joseph J. Chang
  • Robert F. Schmidt
Article

Keywords

Human Physiology Prolonged Action Purkinje Fiber Mammalian Heart Hyperpolarizing Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bak, A. F.: A unity gain cathode follower. Electroenceph. clin. Neurophysiol. 10, 745–748 (1958).Google Scholar
  2. Bonhoeffer, K. F.: Modelle der Nervenerregung. Naturwissenschaften 40, 301 (1953).Google Scholar
  3. Carmeliet, E.: L'influence de la concentration extracellulaire du K sur la perméabilité de la membrane des fibres de Purkinje de mouton pour les ions 42 K. Helv. physiol. pharmacol. Acta 18, C15-C16 (1960).Google Scholar
  4. Chang, J. J., and R. F. Schmidt: Action potentials of reversed polarity in Purkinje fibers of dog heart. Naturwissenschaften 47, 259 (1960a).Google Scholar
  5. Chang, J. J., u. R. F. Schmidt: Aktionspotentiale umgekehrter Polarität in Purkinje-Fasern des Hundes Kongr. dtsch. Physiol. Ges. 1960. Pflügers Arch. ges. Physiol. 272, 37 (1960b).Google Scholar
  6. Coraboeuf, E., and S. Weidmann: Temperature effects on the electrical activity of Purkinje fibers. Helv. physiol. pharmacol. Acta 12, 32–41 (1954).Google Scholar
  7. Délèze, J.: Possible reasons for drop of resting potential of mammalian heart preparations during hypothermia. Circulat. Res. 8, 553–557 (1960).Google Scholar
  8. Draper, M. H., and S. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 74–94 (1951).Google Scholar
  9. FitzHugh, R.: Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. gen. Physiol. 43, 867–896 (1960).Google Scholar
  10. Franck, U. F.: Zur Stabilität von Elektrodenzuständen. Z. physik. Chem. Neue Folge 3, 183–221 (1955).Google Scholar
  11. Franck, U. F.: Models for biological excitation processes. Progr. Biophysics 6, 171–206 (1956).Google Scholar
  12. Franck, U. F.: Instabilitätserscheinungen an passivierbaren Metallen. Z. Elektrochem., Ber. Bunsenges. physik Chem. 62, 649–655 (1958).Google Scholar
  13. Hodgkin, A. L., and A. F. Huxley: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544 (1952).Google Scholar
  14. Kern, R.: Röhrenvoltmeter zur erdfreien Messung von Reizströmen. Kongr. dtsch. Physiol. Ges. 1960. Pflügers Arch. ges. Physiol. 272, 83 (1960).Google Scholar
  15. Mueller, P.: Effects of external currents on duration and amplitude of normal and prolonged action potential from single nodes of Ranvier. J. gen. Physiol. 42, 163–191 (1958).Google Scholar
  16. Schmidt, R. F., u. J. J. Chang: Stillstand des Herzaktionspotentials auf dem Plateau. Kongr. dtsch. Physiol. Ges. 1960. Pflügers Arch. ges. Physiol. 272, 37–38 (1960a).Google Scholar
  17. Schmidt, R. F., u. J. J. Chang: Aktionspotential und Mechanogramm von Purkinje-Fäden in tiefer Temperatur (in Vorbereitung) (1960b).Google Scholar
  18. Segal, J. R.: An anodal threshold phenomenon in the squid giant axon. Nature (Lond.) 182, 1370–1372 (1958).Google Scholar
  19. Spyropoulos, C. S., and R. O. Brady: Prolongation of response of node of Ranvier by metal ions. Science 129, 1366–1367 (1959).Google Scholar
  20. Stämpfli, R.: Die Strom-Spannungs-Charakteristik der erregbaren Membran eines einzelnen Schnürrings und ihre Abhängigkeit von der Ionenkonzentration. Helv. physiol. pharmacol. Acta 16, 127–145 (1958).Google Scholar
  21. Tasaki, I.: Demonstration of two stable states of the nerve membrane in potassium-rich media. J. Physiol. (Lond.) 148, 306–331 (1959a).Google Scholar
  22. Tasaki, I.: Resting and action potentials of reversed polarity in frog nerve cells. Nature (Lond.) 184, 1574–1575 (1959b).Google Scholar
  23. Tasaki, I., and S. Hagiwara: Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. gen. Physiol. 40, 859–885 (1957).Google Scholar
  24. Tasaki, I., and C. S. Spyropoulos: Membrane conductance and current-voltage relation in the squid axon under “voltage-clamp”. Amer. J. Physiol. 193, 318–327 (1958).Google Scholar
  25. Trautwein, W., U. Gottstein u. K. Federschmidt: deDer Einfluß der Temperatur auf den Aktionsstrom des excidierten Purkinje-Fadens, gemessen mit einer intracellulären Elektrode. Pflügers Arch. ges. Physiol. 258, 243–260 (1953).Google Scholar
  26. Weidmann, S.: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.) 115, 227–236 (1951).Google Scholar
  27. Weidmann, S.: Elektrophysiologie der Herzmuskelfaser. Bern, Stuttgart: Medizinischer Verlag Hans Huber 1956a.Google Scholar
  28. Weidmann, S.: Shortening of the cardiac action potential due to a brief injection of KCl following the onset of activity. J. Physiol. (Lond.) 132, 157–163 (1956b).Google Scholar

Copyright information

© Springer-Verlag 1960

Authors and Affiliations

  • Joseph J. Chang
    • 1
  • Robert F. Schmidt
    • 1
  1. 1.Aus dem Physiologischen Institut, Extraordinariat für Physiologieder Universität HeidelbergGermany

Personalised recommendations