Skip to main content
Log in

Modifiers of ochre suppressors in Saccharomyces cerevisiae that exhibit ochre suppressor-dependent amber suppression

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Mutants of Saccharomyces cerevisiae were selected that would interact with ochre (UAA) suppressors so as to allow ochre -suppressor dependant amber (UAG) suppression, but which do not exhibit opal (UGA) suppression. Strains mutant at four distinct loci were isolated, and two of these are recessive mutations while the other two behave as dominants or semidominants. MOS3 has some suppressor activity in the absence of a resident SUP4-o gene and shares other characteristics with previously described omnipotent suppressors. MOS4, mos1 and mos2, on the other hand, exhibit no suppressor activity in the absence of a resident SUP4-o gene but do exhibit suppression of UAG alleles when there is a resident SUP4-o gene. These latter modifier strains do not interact with a SUP4-o gene to suppress UGA alleles. By genetic and physiological criteria the MOS4, mosl, and most mutations appear to be different than previously described allosuppressors or modifiers of suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barratt RW, Newmeyer D, Perkins DD, Garnjobot L (1954) Adv Genet 6:1–93

    Google Scholar 

  • Bjork G (1984) In: Apirion D (ed) Processing of RNA. CRC Press, Boca Raton, Florida, pp 291–330

    Google Scholar 

  • Breining P, Piepersberg W (1986) Nucleic Acids Res 14:5187–5197

    Google Scholar 

  • Cox B (1977) Genet Res 30:187–205

    Google Scholar 

  • Elseviers D, Petrullo L, Gallagher P (1984) Nucleic Acids Res 12: 3521–3533

    Google Scholar 

  • Eustice DC, Wakem LP, Wilhelm JM, Sherman F (1986) J Mol Biol 188:207–214

    Google Scholar 

  • Gerlach WL (1975) Mol Gen Genet 138:53–63

    Google Scholar 

  • Grossenbacher AM, Stadelmann B, Heyer WD, Thuriaux P, Kohli J (1986) J Biol Chem 261:16351–16355

    Google Scholar 

  • Hagervall T, Bjork G (1984) Mol Gen Genet 196:194–200

    Google Scholar 

  • Hawthorne D, Leupold U (1974) Curr Top Microbiol Immunol 64:1–47

    Google Scholar 

  • Heyer W-D, Thuriaux P, Kohli J, Ebert P, Kerstan H, Gehrke C, Kuo C, Agris P (1984) J Biol Chem 259:2856–2862

    Google Scholar 

  • Himmelfarb HJ, Maicas E, Friesen JD (1985) Mol Cell Biol 5:816–822

    Google Scholar 

  • Hottinger H, Stadelmann B, Pearson D, Frendeway D, Kohli J, Soll D (1984) EMBO J 3:423–428

    Google Scholar 

  • Ishiguro J, Ono B, Masurekar M, McLaughlin C, Sherman F (1981) J Mol Biol 147:391–397

    Google Scholar 

  • Janner F, Vogelli G, Fluri R (1980) J Mol Biol 139:207–219

    Google Scholar 

  • Kohli J (1983) In: Agris PF, Kapper RA (eds) Modified nucleosides of transfer RNA, vol II. Liss, New York, pp 1–10

    Google Scholar 

  • Laten HW (1984) Curr Genet 8:29–32

    Google Scholar 

  • Laten H, Cramer J, Rownd R (1983) Biochem Biophys Acta 741:1–6

    Google Scholar 

  • Laten H, Gorman J, Bock R (1978) Nucleic Acids Res 5:4329–4342

    Google Scholar 

  • McCready SJ, Cox BS (1973) Mol Gen Genet 124:321–328

    Google Scholar 

  • Mortimer RK, Child D (1985) Microbiol Rev 49:181–212

    Google Scholar 

  • Munz P, Leupold U, Agris P, Kohli J (1981) Nature 294:187–188

    Google Scholar 

  • Ono B, Ishino-arao Y, Tanaka M, Awano I, Shinoda S (1986) Genetics 114:363–374

    Google Scholar 

  • Ono B, Moriga N, Ishihara K, Ishiguro J, Ishino Y, Shinoda S (1984) Genetics 107:219–230

    Google Scholar 

  • Ono B, Tanaka M, Kaminami M, Ishino Y, Shinoda S (1982) Genetics 102:653–664

    Google Scholar 

  • Rossi JJ, Schold M, Larson GP, Wallace RB (1982) Gene 20: 423–432

    Google Scholar 

  • Ryden SM, Isaksson LA (1984) Mol Gen Genet 193:38–45

    Google Scholar 

  • Sherman F (1982) In: Strathern J, Jones E, Broach J (eds) Molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 463–486

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1979) Methods in yeast genetics: laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Singh A (1977) Proc Natl Acad Sci USA 74:305–309

    Google Scholar 

  • Smirnov VN, Kreier VG, Lizlova LV, Andrianova VM, IngeVechtomov SG (1974) Mol Gen Genet 129:105–121

    Google Scholar 

  • Smirnov VN, Surguchov A, Smirnov VV, Beresteskaya Y, IngeVechtomov SG (1978) Mol Gen Genet 163:87–90

    Google Scholar 

  • Song JM, Liebman SW (1985) J Bacteriol 161:778–780

    Google Scholar 

  • Sullivan M, Cannon J, Webb F, Bock R (1985) J Bacteriol 161: 368–376

    Google Scholar 

  • Vijigenboom E, Vink T, Kraal B, Bosch L (1985) EMBO J 4:1049–1052

    Google Scholar 

  • Waldron C, Cox B (1978) Mol Gen Genet 159:223–225

    Google Scholar 

  • Waldron C, Cox B, Wills N, Gesteland R, Piper P, Colby D, Guthrie C (1981) Nucleic Acids Res 9:3077–3088

    Google Scholar 

  • Yokoyama S, Watanabe T, Murao K, Ishikura M, Yamaizumi Z, Nishimura S, Miyazawa T (1985) Proc Natl Acad Sci 82:4905–4909

    Google Scholar 

  • Young CSH, Cox BS (1971) Heredity 26:413–422

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gélugne, JP., Belle, J.B. Modifiers of ochre suppressors in Saccharomyces cerevisiae that exhibit ochre suppressor-dependent amber suppression. Curr Genet 14, 345–354 (1988). https://doi.org/10.1007/BF00419992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419992

Key words

Navigation