Skip to main content
Log in

Rigid and non-rigid kinetic depth effect with rotating discrete helices

  • Published:
Psychological Research Aims and scope Submit manuscript

Summary

To examine the conditions in which human observers fail to recover the rigid structure of a three-dimensional object in motion we used simulations of discrete helices with various pitches undergoing either pure rotation in depth (rigid stimuli) or rotation plus stretching (non-rigid stimuli). Subjects had either to rate stimuli on a rigidity scale (Experiments 1 and 2) or to judge the amount of rotation of the helices (Experiments 3 and 4). We found that perceived rigidity depended on the pitch of the helix rather than on objective non-rigidity. Furthermore, we found that helices with a large pitch/radius ratio were perceived as highly non-rigid and that their rotation was underestimated. Experiment 5 showed that the detection of a pair of dots rigidly related (located on. the helix) against a background of randomly moving dots is easier at small phases in which the change of orientation across frames is also small. We suggest that this is because at small phases the grouping of dots in virtual lines does occur and that this may be an important factor in the perceived nonrigidity of the helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelson, E. H. (1985). Rigid objects that appear highly non-rigid. Investigative Ophthalmology and Visual Science Supplement 26, 56.

    Google Scholar 

  • Bennett, B. M., & Hoffmann, D. D. (1985). The computation of Structure from Fixed-Axis Motion: Nonrigid Structures. Biological Cybernetics, 51, 293–300.

    Google Scholar 

  • Bobick, A. (1983). A hybrid approach to structure-from-motion. Proceedings of the ACM Interdisciplinary Workshop on Motion: Representation and Perception, Toronto, Canada, pp. 91–109.

  • Bouma, H., & Andriessen, J. J. (1968). Perceived orientation of isolated line segments. Vision Research, 8, 493–507.

    Google Scholar 

  • Braunstein, M. L. (1962). Depth perception in rotation dot patterns: Effects of numerosity and perspective. Journal of Experimental Psychology, 64, 410–420.

    Google Scholar 

  • Braunstein, M. L., & Andersen, G. J. (1984). A counterexample to the rigidity assumption in the visual perception of structure from motion. Perception, 13, 213–217.

    Google Scholar 

  • Braunstein, M. L., Hoffman, D. D., & Pollick, F. E. (1990). Discriminating rigid from nonrigid motion: minimum points and views. Perception & Psychophysics, 47, 205–214.

    Google Scholar 

  • Brown, J. L., & Kortela, I. M. (1977). Orientation discrimination. In S. J. Cool & E. L. Smith (Eds.), Frontiers in visual science (pp. 286–297). New York: Springer-Verlag.

    Google Scholar 

  • Casco, C., Morgan, J. M., & Ward, R. M. (1989). Spatial properties of mechanisms for detection of moving dot targets in dynamic visual noise. Perception, 18, 285–291.

    Google Scholar 

  • Clocksin, W. F. (1980). Perception of surface slant and edge labels from optical flow: A computational approach. Perception, 9, 253–269.

    Google Scholar 

  • Ganis, G., Casco, C., & Roncato, S. (in press). Perceived rigidity and nonrigidity in the Kinetic depth effect. Perception.

  • Gibson, J. J., & Gibson, E. J. (1957). Continuous perspective transformations and the perception of rigid motion. Journal of Experimental Psychology, 54, 129–138.

    Google Scholar 

  • Green, B. F. (1961). Figure coherence in the kinetic depth effect. Journal of Experimental Psychology, 62, 272–282.

    Google Scholar 

  • Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New York: Wiley.

    Google Scholar 

  • Grzywacz, N. M., Hildreth, E. C., Inada, V. K., & Adelsen, E. H. (1988). The temporal integration of 3-D structure from motion: A computational and psychophysical study. In W. Von Seelen, G. Shaw, & U. M. Leinhos, (Eds.), Organization of neural networks (pp. 239–259). Weinheim: VCH.

    Google Scholar 

  • Grzywacz, N. M., & Hildreth, E. C. (1987). Incremental rigidity scheme for recovering structure from motion: Position-based versus velocity-based formulations. Journal of the Optical Society of America, A4, 503–518.

    Google Scholar 

  • Grzywacz, N. M., & Yuille, A. (1986). Motion correspondence and analog networks. MIT Artificial Intelligence Memo 888.

  • Hildreth, E. C. (1984). The measurement of visual motion. ACM Distinguished Dissertation Series. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hoffman, D. D. (1982). Inferring local surface orientation from motion fields. Journal of the Optical Society of America, 72, 888–892.

    Google Scholar 

  • Hoffman, D. D., & Bennett, B. N. (1986). The computation of Structure from Fixed-Axis Motion: Rigid Structures. Biological Cybernetics, 54, 71–83.

    Google Scholar 

  • Hoffman, D. D., & Flinchbaugh, B. E. (1982). The interpretation of biological motion. Biological Cybernetics, 42, 195–204.

    Google Scholar 

  • Ishiguchi, A. (1988). The effect of orientation on interpolated elastic structure from dot motion. Perception & Psychophysics, 44, 348–357.

    Google Scholar 

  • Jansson, G., & Johansson, G. (1973). Visual perception of bending motion. Perception, 2, 321–326.

    Google Scholar 

  • Johansson, G. (1964). Perception of motion and changing form. Scandinavian Journal of Psychology, 5, 181–208.

    Google Scholar 

  • Johansson, G. (1975). Visual motion perception. Scientific American, 232, 76–88.

    Google Scholar 

  • Johansson, G. (1977). Spatial constancy and motion in visual perception. In W. Epstein. Stability and constancy in visual perception. New York: Wiley.

    Google Scholar 

  • Koenderink, J. J., & van Doorn, A. J. (1986). Depth and shape from differential perspective in the presence of bending deformations. Journal of the Optical Society of America, A 3, 242–249.

    Google Scholar 

  • Longuet-Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135.

    Google Scholar 

  • Longuet-Higgins, H. C., & Prazdny, K. (1981). The interpretation of moving retinal images. Proceedings of the Royal Society of London, B 208, 385–397.

    Google Scholar 

  • Marascuilo, L. A. (1970). Extension of the significance test for one-parameter signal detection hypotheses. Psychometrika, 35, 237–243.

    Google Scholar 

  • Mitiche, A. (1984). Computation of optical flow and rigid motion. Proceedings of the Workshop on Computer Vision: Representation and Control Analysis, Md., pp. 63–71.

  • Mitiche, A. (1986). On kineopsis and computation of structures and motion. IEEE Transactions in Pattern Analysis and Machine Intelligence. PAMI-8, 109–112.

    Google Scholar 

  • Mitiche, A., Seida, S., & Aggarwal, J. K. (1985). Determining position and displacement in space from images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, June, pp. 504–509.

  • Nakayama, K., & Silverman, G. H. (1988). The aperture problem I: Perception of non-rigidity and motion direction in translating sinusoidal lines. Vision Research, 28 (6), 739–746.

    Google Scholar 

  • Nelson, B. S. (1991). Temporal Interactions in the Cat Visual System. I. Orientation-Selective Suppression in the Visual Cortex. Journal of Neuroscience, 11 (2), 344–356.

    Google Scholar 

  • Petersick, J. T. (1987). Recovery of structure from motion: Implications for a performance theory based on the structure-from-motion theorem. Perception & Psychophysics, 42, 355–364.

    Google Scholar 

  • Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317, 314–319.

    Google Scholar 

  • Prazdny, K. (1980). Egomotion and relative depth map from optical flow. Biological Cybernetics, 36, 87–102.

    Google Scholar 

  • Prazdny, K. (1983). On the information in optical flows. Computational Vision, Graphics and Image Processing, 22, 239–259.

    Google Scholar 

  • Proffit, D. R., Gilden D. L., Kaiser M. K., & Whelan S. M. (1988). The effect of configurational orientation on perceived trajectory in apparent motion. Perception & Psychophysics, 43, 315–323.

    Google Scholar 

  • Sperling, G., Landy, M. S., Dosher, B. A., & Perkins, M. E. (1989). The kinetic depth effect and identification of shape. Journal of Experimental Psychology: Human Perception and Performance, 15, 826–840.

    Google Scholar 

  • Sperling, G., Pavel, M., Cohen, Y., Landy, M. S., & Schwartz, B. J. (1983). Image processing in perception and cognition. In O. J. Braddick, A. C. Sleigh (Eds.), Physical and biological processing of images. Berlin: Springer-Verlag.

    Google Scholar 

  • Todd, J. T. (1982). Visual information about rigid and nonrigid motion: A geometric analysis. Journal of Experimental Psychology: Human Perception & Performance, 8, 238–252.

    Google Scholar 

  • Todd, J. T. (1984). The perception of three-dimensional structure from rigid and nonrigid motion. Perception & Psychophysics, 36, 97–103.

    Google Scholar 

  • Todd, J. T. (1985). The perception of structure from motion: Is projective correspondence of moving elements a necessary condition? Journal of Experimental Psychology: Human Perception and Performance, 11, 689–710.

    Google Scholar 

  • Todd, J. T., Akerstrom, R. A., Reichel, F. D., & Hayes, W. (1988). Apparent rotation in three-dimensional space: Effect of temporal, spatial and structural factors. Perception & Psychophysics, 43, 179–188.

    Google Scholar 

  • Tsai, R. Y., & Huang, T. S. (1981). Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. University of lllinois Urbana-Champaign, Coordinate Science Lab. Report R-921.

  • Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ullman, S. (1983). Recent computational studies in the interpretation of structure from motion. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision. New York: Academic Press.

    Google Scholar 

  • Ullman, S. (1984). Maximizing rigidity: The incremental recovery of 3-D structure from rigid and nonrigid motion. Perception, 13, 255–274.

    Google Scholar 

  • Uttal, W. R. (1975). An autocorrelation theory of form detection. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Wallach, H., & O'Connell, D. N. (1953). The kinetic depth effect. Journal of Experimental Psychology, 45, 205–217.

    Google Scholar 

  • Wallach, H., Weisz, A., & Adams, P. A. (1956). Circles and derived figures in rotation. American Journal of Psychology, 45, 205–217.

    Google Scholar 

  • Waxman, A. M., & Ullman, S. (1985). Surface structure and three-dimensional motion from image flow kinematics. Journal of Robotics Research, 4, 72–94.

    Google Scholar 

  • White, W. W., & Mueser, G. E. (1960). Accuracy in reconstructing the arrangement of elements generating kinetic depth displays. Journal of Experimental Psychology, 60, 1–11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by MPI 60% (1987, 1988) and CNR (1986), 1987, 1988) grants to Clara Casco and Sergio Roncato and Grant CNR 90.01603.PS93 to Giorgio Ganis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganis, G., Casco, C. & Roncato, S. Rigid and non-rigid kinetic depth effect with rotating discrete helices. Psychol. Res 55, 1–9 (1993). https://doi.org/10.1007/BF00419887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419887

Keywords

Navigation