Skip to main content
Log in

Wave propagation in fluid lines

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The wave propagation in a fluid line consisting of a circular tube, initially stressed, viscoelastic, orthotropic, surrounded by external materials, containing a compressible linear elastic fluid is considered under isentropic conditions. The dispersion equation is derived and a number of simplifications are discussed. The impedances of the line and the transfer matrix are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

radius of the tube

A :

integration constant in (2.11)

A′ :

factor in A defined by (5.16)

B′ :

tube parameter defined by (9.6)

B (ij) (i, j=1, 2):

coefficients of linear stress-strain relations

B′ ij :

dimensionless parameters defined in (5.8)

B 011 , B 012 , B 021 :

dimensionless parameters defined in (5.10)

c :

complex wave propagation velocity

c i :

phase velocity of the i-th mode

c MK :

Moens-Korteweg reference velocity (4.4)

c p :

specific heat capacity at constant pressure

c T :

thermodynamic velocity of sound (∂ρ/c) 1/2 s

c 0 :

reference velocity defined in (4.1)

C :

dimensionless parameter defined in (4.7)

D 1, D 2 :

undetermined constants of solution

Dn:

dissipation number (10.12)

E :

Young's modulus

F :

function defined in (9.4)

F n y):

functions defined in (2.12)

F , F :

functions defined in (5.4) and (5.5)

F (r/a)F (r/a):

functions defined in (6.4)

h :

wall thickness

J n (y):

Bessel functions of the n-th order and first kind

k :

c 0/c

K :

bulk modulus of the compressible fluid

K r :

dimensional coefficient defined in (4.2)

K′ j (j=x, r):

dimensionless coefficient defined in (5.8)

l :

length of tube section

L j :

damping of external wall material

m :

ρ w h/ρa (5.11)

M j :

mass of external wall material

N j :

elasticity of external wall material

p :

fluid pressure in excess of steady state pressure

p 1(a), p 2(a):

fluid pressure at the wall at x=0 and x=l

Pn:

propagation number (10.12)

P :

total fluid pressure

P 1, P 2 :

P at x=0 and x=l

Pr:

Prandtl number

r :

radial coordinate in r, θ, x coordinate system

s :

specific entropy

s + :

perturbation longitudinal wall stress

S :

initial tension

t :

time coordinate

t + :

perturbation circumferential wall stress

T :

thermodynamic temperature

u :

axial liquid velocity

v :

radial liquid velocity

x :

axial coordinate in r, θ, x coordinate system

X j :

stresses exerted on the wall

Z c :

characteristic impedance (10.8)

Z 1, Z 2 :

impedances at x=0 and x=l

α, α′ :

dimensionless parameters defined by (2.13)

α T :

cubic expansion coefficient

β, β′, β 0T :

dimensionless parameters defined by (2.13)

β 0n , β 1n :

non negative roots of the Bessel function J 0, J 1

γ :

propagation constant (10.9)

γ e :

parameter defined by (3.5)

Δ i :

logarithmic decrement of the i-th mode

ζ :

parameter defined by (2.13)

η :

radial wall displacement

θ :

angular coordinate in r, θ, x coordinate system

κ :

bulk viscosity

λ:

thermal conductivity; parameter in F n y)

λ i :

wave length of the i-th mode

μ :

dynamic viscosity

ν :

kinematic viscosity

ν′ :

dimensionless kinematic viscosity (7.3)

ξ :

axial wall displacement

ρ :

density of the fluid

ρ w :

density of the wall

ρ 0 :

density of the fluid in the steady state

σ :

Poisson's ratio

φ 1, φ 2, φ 3, φ 4 :

parameters defined in (2.13), (5.8), (5.10)

Φ:

volume flux of the fluid

Φ1, Φ2 :

Φ at x=0 and x=l

ω :

circular frequency

^:

amplitude of an oscillating quantity

′:

dimensionless quantity

0:

reference values

θ :

circumferential direction

r :

radial direction

x :

axial direction

13. References

  1. Fung YC (1981) Biomechanics. Mechanical Properties of Living Tissues. Springer Verlag, New York, Heidelberg, Berlin

    Google Scholar 

  2. Iberall AS (1950) Attenuation of oscillatory pressures in instrument lines. US Dept of Commerce, Res Paper RP 2115, J Res Nat Bur Stands 45:85–108

    Google Scholar 

  3. D'Souza AF and Oldenburger R (1964) Dynamic response of fluid lines. J Basic Eng, Trans ASME 86:589–598

    Google Scholar 

  4. Goodson RE and Leonard RG (1972) A survey of modelling techniques for fluid line transients. J Basic Eng, Trans ASME 94:474–482

    Google Scholar 

  5. Rieutord E (1982) Transient response of fluid viscoelastic lines, J Fluids Eng, Trans ASME 104:335–341

    Google Scholar 

  6. Cox RH (1969) Comparison of linearized wave propagation models for arterial blood flow analysis. J Biomech 2:251–265

    Google Scholar 

  7. McDonald DA (1974) Blood Flow in Arteries, 2nd edn. Arnold, London

    Google Scholar 

  8. Pedley TJ (1980) The Fluid Mechanics of Large Blood Vessels. Cambridge Univ Press, Cambridge

    Google Scholar 

  9. Rubinov SI and Keller JB (1978) Wave propagation in a viscoelastic tube containing a viscous fluid. J Fluid Mech 88:181–203

    Google Scholar 

  10. Kuiken GDC (1984) Approximate dispersion equations for thin walled liquid-filled tubes. Appl Sci Res 41:37–53

    Google Scholar 

  11. Kuiken GDC (1984) Wave propagation in a thin walled liquid filled initially stressed tube. To appear in J Fluid Mech 141:289–308

    Google Scholar 

  12. Lagerstrom, PA, Cole JD and Trilling L (1949) Problems in the theory of viscous compressible fluids. Monograph Cal Inst of Techn

  13. Kovasznay LSG (1953) Turbulence in supersonic flow. J Aero Sci 20:657–674, 682

    Google Scholar 

  14. Moodie TB, Haddow JB and Tait RJ (1982) Wave propagation in a thin walled fluid filled viscoelastic tube. Acta Mech 42:123–134

    Google Scholar 

  15. Flügge W (1973) Stresses in Shells, 2nd edn. Springer-Verlag, Berlin, Heidelberg and New York, 525 pp

    Google Scholar 

  16. Atabek HB and Lew HS (1966) Wave propagation through a viscous incompressible fluid contained in an initially stressed elastic tube. Biophys J 6:481–503

    Google Scholar 

  17. Atabek HB (1968) Wave propagation through a viscous fluid contained in a tethered, initially stressed, orthotropic elastic tube. Biophys J 8:626–649

    Google Scholar 

  18. Flaud P, Geiger D, Oddou C. et Quémada, D. (1974) Écoulements pulsés dans les tuyaux viscoélastiques. Application à l'étude de la circulation sanguine. J de Physique 35:869–882

    Google Scholar 

  19. Patel DJ, and Vaishnav RN (1972) The rheology of large blood vessels. In: Bergel DH (ed), Cardiovascular Fluid Dynamics, Ch 11, Academic Press, London

    Google Scholar 

  20. Korteweg DJ (1878) Über die Fortpflanzungesgeschwindigkeit des Schalles in elastischen Röhren. Ann Phys Chem, Neue Folge 5:525–542

    Google Scholar 

  21. Lamb H (1898) On the velocity of sound in a tube, as affected by the elasticity of the walls. Manchester Lit Phil Soc Mem Proc 42(9):1–16

    Google Scholar 

  22. Résal, MH (1876) Sur les petits mouvements d'un fluide incompressible dans un tuyau élastique. CR Acad Sci Paris 82:698–699

    Google Scholar 

  23. Moens AI (1878) Die Pulskurve, Brill, Leiden

    Google Scholar 

  24. Joukowski N (1898) Über den hydraulischen Stoss in Wasserleitungsrohren. Memoires l'Academie Impériale des Sciences de St. Petersbourg. (Ser 8), 9 (5). Translated in “Water Hammer”, proc. Amer Water Works Ass 1904, p 341

  25. Wylie EB and Streeter VL (1978) Fluid Transients. McGraw-Hill, New York

    Google Scholar 

  26. Watters GZ (1979) Modern Analysis and Control of Steady Flow in Pipelines. Ann Arbor Science, Ann Arbor, Mich

    Google Scholar 

  27. Maxwell JA and Anliker M (1968) The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties. Biophys J 8:920–950

    Google Scholar 

  28. Kobori TS, Yokoyama S and Miyashiro H (1955) Propagation velocity of pressure wave in pipe line. Hitachi Hyoron 37(10)

  29. Pearsall IS (1965–66) The velocity of water hammer waves. Symp on surges in pipelines. Proc Inst Mech Eng 180, part 3E

  30. Stulemeijer IPJM (1981) Beschreibung der Druckschwankungen in hydrostatischen Anlangen und ihre Auswirkungen auf den Luftschall. PhD Diss Techn Univ Eindhoven

  31. Kirchhoff G (1868) Ueber den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Poggendorfer Annalen 134:177–193

    Google Scholar 

  32. Rayleigh, Lord (1896) Theory of Sound, Vol. II, 2nd edn., McMillan Co, London, pp 319–326

    Google Scholar 

  33. Shields FD, Lee KP and Wiley WJ (1965) Numerical solution for sound velocity and absorption in cylindrical tubes. J Acoust Soc Am 37:724–729

    Google Scholar 

  34. Scarton HA and Rouleau WT (1973) Axisymmetric waves in compressible Newtonian liquids contained in rigid tubes: steady-periodic mode shapes and dispersion by the method of eigenvalues. J Fluid Mech 58:595–621

    Google Scholar 

  35. Tijdeman H (1975) On the propagation of sound waves in cylindrical tubes. J Sound and Vibration 39:1–33

    Google Scholar 

  36. Young T (1808) Hydraulic investigations, subservient to an intended Croonian lecture on the motion of blood. Phil Trans Roy Soc 98:164–186

    Google Scholar 

  37. Rubinow SI and Keller JB (1971) Wave propagation in a fluid-filled tube. J Acoust Soc Am 50:198–223

    Google Scholar 

  38. Rosenhead L (1954) The second coefficient of viscosity: a brief review of fundamentals. Proc Roy Soc A226:1–6

    Google Scholar 

  39. Kuiken, GDC (1984) Wave propagation in compliant tubes containing a heat-conducting viscous fluid. Submitted to J Fluid Mech, December 1983

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuiken, G.D.C. Wave propagation in fluid lines. Applied Scientific Research 41, 69–91 (1984). https://doi.org/10.1007/BF00419360

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419360

Keywords

Navigation