Skip to main content
Log in

C-peptide improves autonomic nerve function in IDDM patients

  • Originals
  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

In order to determine the possible influence of C-peptide on nerve function, 12 insulin-dependent diabetic (IDDM) patients with symptoms of diabetic polyneuropathy were studied twice under euglycaemic conditions. Tests of autonomic nerve function (respiratory heart rate variability, acceleration and brake index during tilting), quantitative sensory threshold determinations, nerve conduction studies and clinical neurological examination were carried out before and during a 3-h i. v. infusion of either C-peptide (6 pmol · kg−1 · min−1) or physiological saline solution in a double-blind study. Plasma C-peptide concentrations increased from 0.11±0.02 to 1.73±0.04 nmol/l during C-peptide infusion. Clinical neurological examination quantitative sensory threshold evaluations and nerve conduction measurements failed to detect significant changes between C-peptide and saline study periods. Respiratory heart rate variability increased significantly from 13±1 to 20±2% during C-peptide infusion (p<0.001), reaching normal values in five of the subjects; control studies with saline infusion did not alter the heart rate variability (basal, 14±2; saline, 15±2%). A reduced brake index value was found in seven patients and increased significantly during the C-peptide infusion period (4.6±1.0 to 10.3±2.2%, p<0.05) but not during saline infusion (5.9±2 to 4.1±1.1%, NS). It is concluded that short-term (3-h) infusion of C-peptide in physiological amounts may improve autonomic nerve function in patients with IDDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IDDM:

Insulin-dependent diabetes mellitus

VT:

vibration perception threshold

CV:

conduction velocity

DL:

distal latency

CMAP:

compound action potential

S:

sensory amplitude

E/I ratio:

expiration/inspiration ratio

References

  1. Melton LJ, Dyck PJ (1987) Epidemiology. In: Dyck PJ, Thomas PK, Asbury AK, Winegard AI, Porte Jr (eds) Diabetic neuropathy. W. B. Saunders, Philadelphia, pp 27–35

    Google Scholar 

  2. Ewing DJ, Clarke BF (1986) Diabetic autonomic neuropathy: present insights and future prospects. Diabetes Care 9: 648–665

    Article  CAS  PubMed  Google Scholar 

  3. Thomas PK (1991) Diabetic neuropathy: epidemiology and pathogenesis. In: Pickup JC, Williams G (eds) Textbook of diabetes, Vol 2. Blackwell Scientific Publications, Oxford, pp 613–622

    Google Scholar 

  4. Greene DA, Yagihashi S, Lattimer SA, Sima AAF (1984) Nerve Na+ K+ ATPase, conduction and myo-inositol in the insulin dependent BB rat. Am J Physiol 247: 534–539

    Google Scholar 

  5. Raccah D, Gallice P, Pouget J, Vague P (1992) Hypothesis: low Na/K-ATPase activity in the red cell membrane, a potential marker of the predisposition to diabetic neuropathy. Diabete Metab 18: 236–241

    CAS  PubMed  Google Scholar 

  6. Steiner D (1978) On the role of the proinsulin C-peptide. Diabetes 27: [Suppl 1] 141–148

    Google Scholar 

  7. Johansson B-L, Sjöberg S, Wahren J (1992) The influence of C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia 35: 121–128

    Article  CAS  PubMed  Google Scholar 

  8. Johansson B-L, Kernell A, Sjöberg S, Wahren J (1993) Influence of combined C-peptide and insulin administration on renal function and metabolic control in diabetes type 1. J Clin Endocrinol Metab 77: 976–981

    CAS  PubMed  Google Scholar 

  9. Johansson B-L, Linde B, Wahren J (1992) Effects of C-peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm in type 1 (insulin-dependent) diabetic patients. Diabetologia 35: 1151–1158

    Article  CAS  PubMed  Google Scholar 

  10. Ohtomo Y, Aperia A, Sahlgren B, Johansson B-L, Wahren J (1996) C-peptide stimulates rat renal tubular Na+ K+-ATPase activity in synergism with neuropeptide. Diabetologia 39: 199–205

    Article  CAS  PubMed  Google Scholar 

  11. American Diabetes Association, American Academy of Neurology (1988) Consensus statement. Report and recommendations of the San Antonio conference on diabetic neuropathy. Diabetes Care 11: 592–597

    Article  Google Scholar 

  12. Dyck PJ (1988) Detection, characterization and staging of polyneuropathy: assessed in diabetics. Muscle Nerve 11: 21–32

    Article  CAS  PubMed  Google Scholar 

  13. Sundkvist G, Almér L-O, Lilja B (1979) Respiratory influence on heart rate in diabetes mellitus. BMJ 1: 924–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sundkvist G, Almér L-O, Lilja B (1980) Abnormal diastolic blood pressure and heart rate reactions to tilting in diabetes mellitus. Diabetologia 19: 433–438

    Article  CAS  PubMed  Google Scholar 

  15. Bergström B, Lilja B, Rosberg K, Sundkvist G (1986) Autonomic nerve function tests. Reference values in healthy subjects. Clin Physiol 6: 523–528

    Article  PubMed  Google Scholar 

  16. Hansson P, Lindblom U, Lindström P (1991) Graded assessment and classification of impaired temperature sensibility in patients with diabetic polyneuropathy. J Neurol Neurosurg Psychiatr 54: 527–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frusthorfer H, Lindblom U, Schmidt WG (1976) Method for quantitative estimation of thermal threshold in patients. J Neurol Neurosurg Psychiatr 39: 1071–1075

    Article  Google Scholar 

  18. Lindblom U (1981) Quantitative testing of sensibility including pain. In: Stålberg SE, Young RR (eds) Clinical neurophysiology, neurology 1. Butterworth, London, pp 168–190

    Google Scholar 

  19. Goldberg JM, Lindblom U (1979) Standardized method of determining vibratory perception thresholds for diagnosis and screening in neurological investigation. J Neurol Neurosurg Psychiatr 42: 793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ziegler D, Mayer P, Gries FA (1988) Evaluation of thermal, pain and vibration sensation in newly diagnosed type 1 diabetic patients. J Neurol Neurosurg Psychiatr 51: 1420–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arnqvist H, Olson PO, Von Schenk H (1987) Free and total insulin determined after precipitation with polyethylene glycol: analytic characteristics and effects of sample handling and storage. Clin Chem 33: 93–96

    CAS  PubMed  Google Scholar 

  22. The Diabetic Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

    Article  Google Scholar 

  23. Reichard P, Nilsson B-Y, Rosenqvist U (1993) The effect of long-term intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med 329: 304–309

    Article  CAS  PubMed  Google Scholar 

  24. Fedele D, Negrin P, Cardone C et al. (1984) Influence of continuous subcutaneous insulin infusion (CSII) treatment on diabetic somatic and autonomic neuropathy. J Endocrinol Invest 7(6): 623–628

    Article  CAS  PubMed  Google Scholar 

  25. Sundkvist G, Lilja B, Rosén I, Agardh C-D (1987) Autonomic and peripheral nerve function in early diabetic neuropathy. Possible influence of a novel aldose reductase inhibitor on autonomic function. Acta Med Scand 221: 445–453

    Article  CAS  PubMed  Google Scholar 

  26. Jaspan JB, Herold K, Bartkus C (1985) Effects of sorbinil therapy in diabetic patients with painful peripheral neuropathy and autonomic neuropathy. Am J Med 79: [Suppl 5 A] 24–37

    Article  CAS  PubMed  Google Scholar 

  27. Kennedy WR, Navarro X, Goetz FC, Sutherland DER, Najarian JS (1990) Effects of pancreatic transplantation on diabetic neuropathy. New Engl J Med 322: 1031–1037

    Article  CAS  PubMed  Google Scholar 

  28. Solders G, Tyden G, Persson A, Groth C-G (1992) Improvement of nerve conduction in diabetic neuropathy — a follow-up study 4 yr after combined pancreatic and renal transplantation. Diabetes 41: 948–951

    Article  Google Scholar 

  29. Nusser J, Scheuer R, Abendroth D, Illner W-D, Land W, Landgraf R (1991) Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy. Diabetologia 34: [Suppl 1] 118–120

    Article  Google Scholar 

  30. Guy RJC, Clark CA, Malcom PN, Watkins PI (1985) Evaluation of thermal and vibration sensation in diabetic neuropathy. Diabetologia 28: 131–137

    CAS  PubMed  Google Scholar 

  31. Navarro X, Kennedy WR (1991) Evaluation of thermal and pain sensitivity in type 1 diabetic patients. J Neurol Neurosurg Psychiatr 54: 60–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fagius J, Wahren LK (1981) Variability of sensory threshold determination in clinical use. J Neurol Sci 51: 11–27

    Article  CAS  PubMed  Google Scholar 

  33. Watkins PJ (1992) Clinical observations and experiments in diabetic neuropathy. Diabetologia 35: 2–11

    Article  CAS  PubMed  Google Scholar 

  34. Williams E, Timperley WR, Ward JD, Duckworth T (1980) Electron microscopical studies of vessels in diabetic neuropthy. J Clin Pathol 33: 462–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dyck PJ, Lais A, Karnes JL, O'Brien P, Rizza R (1986) Fiber loss is primary and multifocal in sural nerves in diabetic polyneuropathy. Ann Neurol 19: 425–439

    Article  CAS  PubMed  Google Scholar 

  36. Tesfaye S, Harris ND, Wilson RM, Ward JD (1992) Exercise-induced conduction velocity increment: a marker of impaired peripheral nerve blood flow in diabetic neuropathy. Diabetologia 35: 155–159

    Article  CAS  PubMed  Google Scholar 

  37. Young RJ, Macintyre CCA, Martyn CN et al. (1986) Progression of subclinical polyneuropathy in young patients with type 1 (insulin-dependent) diabetes: associations with glycemic control and microangiopathy (microvascular complications). Diabetologia 29: 156–161

    Article  CAS  PubMed  Google Scholar 

  38. Lindström K, Johansson C, Johansson E, Haraldsson B (1996) Acute effects of C-peptide on the microvasculature of isolated perfused skeletal muscles and kidneys in rat. Acta Physiol Scand 156: in press

  39. Daube J, Service FJ, Dyck PJ (1980) Acute effects on nerve conduction of strict control of blood sugar with an artificial pancreas. Muscle Nerve 9: 347

    Google Scholar 

  40. The St. Thomas Diabetic Study Group (1986) Failure of improved glycaemic control to reverse diabetic autonomic neuropathy. Diabet Med 3: 330–334

    Article  Google Scholar 

  41. Johansson B-L, Fernqvist-Forbes E, Wahren J (1995) Effects of C-peptide on nephropathy and neuropathy in IDDM patients — a clinical study. Diabetes 44: [Suppl 1] 33 A (Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, B.L., Borg, K., Fernqvist-Forbes, E. et al. C-peptide improves autonomic nerve function in IDDM patients. Diabetologia 39, 687–695 (1996). https://doi.org/10.1007/BF00418540

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418540

Keywords

Navigation