Skip to main content
Log in

Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper — Phytophthora capsici Leonian

Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

To study the resistance of pepper to Phytophthora capsici, we analyzed 94 doubled-haploid (DH) lines derived from the intraspecific F1 hybrid obtained from a cross between Perennial, an Indian pungent resistant line, and Yolo Wonder, an American bell-pepper susceptible line, with 119 DNA markers. Four different criteria were used to evaluate the resistance, corresponding to different steps or mechanisms of the host-pathogen interaction: root-rot index, receptivity, inducibility and stability. Three distinct ANOVA models between DNA marker genotypes and the four disease criteria identified 13 genomic regions, distributed across several linkage groups or unlinked markers, affecting the resistance of pepper to P. capsici. Some QTLs were criterion specific, whereas others affect several criteria, so that the four resistance criteria were controlled by different combinations of QTLs. The QTLs were very different in their quantitative effect (R2 values), including major QTLs which explained 41–55% of the phenotypic variance, intermediate QTLs with additive or/and epistatic action (17–28% of the variance explained) and minor QTLs. Favourable alleles of some minor QTLs were carried in the susceptible parent. The total phenotypic variation accounted for by QTLs reached up to 90% for receptivity, with an important part due to epistasis effects between QTLs (with or without additive effects). The relative impact of resistance QTLs in disease response is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Alcantara TP, Bosland PW (1994) An inexpensive disease screening technique for foliar blight of chile-pepper seedlings. Hortscience 29:1182–1183

    Google Scholar 

  • Barksdale TH, Papavizas GS, Johnston SA (1984) Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Dis 68:506–509

    Google Scholar 

  • Bartual RE, Carbonell A, Marsal JI, Tello JC, Campos T (1991) Gene action in the resistance of peppers (Capsicum annuum) to Phytophthora stem blight (Phytophthora capsici L.). Euphytica 54:195–200

    Google Scholar 

  • Bartual R, Lacasa A, Marsal JI, Tello JC (1994) Epistasis in the resistance of pepper to Phytophthora stem blight (Phytophthora capsici L.) and its significance in the prediction of double-cross performances. Euphytica 72:149–152

    Google Scholar 

  • Black LL, Green SK, Hartman GL, Poulos JM (1991) Pepper diseases: a field guide. Asian Vegetable Research and Development Center, AVRDC publication

  • Bosland PW, Lindsey DL (1991) A seedling screen for Phytophthora root rot of pepper, Capsicum annuum. Plant Dis 75:1048–1050

    Google Scholar 

  • Bubeck DM, Goodman MM, Beavis WD, Grant D (1993) Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci 33:838–847

    Google Scholar 

  • Clerjeau M, Pitrat M, Nourisseau JG (1976) La résistance du piment (Capsicum annuum) à Phytophthora capsici. IV. Etude de l'agressivité de divers isolais au niveau des feuilles, des tiges et du collet des plantes sensibles et résistantes. Ann Phytopathol 8:411–423

    Google Scholar 

  • Danesh D, Aarons S, McGill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant-Microbe Interact 7:464–471

    Google Scholar 

  • Dirlewanger E, Isaac PG, Ranade S, Belajouza M, Cousin R, de Vienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Google Scholar 

  • Dumas de Vaulx R (1990) Haploidy and pepper breeding: a review. Capsicum Newslett, 8–9:13–17

    Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85:213–217

    Google Scholar 

  • Figdore SS, Ferreira ME, Slocum MK, Williams PH (1993) Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea L. Euphytica 69:33–44

    Google Scholar 

  • Freymark PJ, Lee M, Woodman WL, Martinson CA (1993) Quantitative and qualitative trait loci affecting host-plant response to Exserohilum turcicum in maize (Zea mays L.). Theor Appl Genet 87:537–544

    Google Scholar 

  • Freymark PJ, Lee M, Martinson CA, Woodman WL (1994) Molecular-marker-facilitated investigation of host-plant response to Exserohilum turcicum in maize (Zea mays L): components of resistance. Theor Appl Genet 88:305–313

    Google Scholar 

  • Giese H, Holm-Jensen AG, Jensen HP, Jensen J (1993) Localization of the Laevigatum powdery mildew resistance gene to barley chromosome 2 by the use of RFLP markers. Theor Appl Genet 85:897–900

    Google Scholar 

  • Gil Ortega R, Palazon Español C, Cuartero Zueco L (1991) Genetics of resistance to Phytophthora capsici in the pepper line ‘SCM 334’. Plant Breed 107:50–55

    Google Scholar 

  • Gil Ortega R, Palazon Español C, Cuartero Zueco L (1992) Genetic relationships among four pepper genotypes resistant to Phytophthora capsici. Plant Breed 108:118–125

    Google Scholar 

  • Guerrero-Moreno A, Laborde JA (1980) Current status of pepper breeding for resistance to Phytophthora capsici in Mexico. In: Synopses IVth Meeting Eucarpia Capsicum working group, 14–16 October 1980; Wageningen, Holland, pp 52–56

  • Kim YJ, Hwang BK, Park KW (1989) Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis 73:745–747

    Google Scholar 

  • Kimble KA, Grogan RG (1960) Resistance to Phytophthora root rot in pepper. Plant Dis Rep 44:872–873

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kreike CM, de Koning JRA, Vinke JH, van Ooijen JW, Stiekema WJ (1994) Quantitatively inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88:764–769

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors under-lying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MapMaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Google Scholar 

  • Landry BS, Hubert N, Crete R, Chang MS, Lincoln SE, Etoh T (1992) A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 35:409–420

    Google Scholar 

  • Lefebvre V (1993) Marquage moléculaire et analyse de résistances polygéniques: interaction piment (Capsicum annuum L.) — Phytophthora capsici Leon. PhD thesis, Université de Paris XI-Orsay, France

    Google Scholar 

  • Lefebvre V, Chèvre A-M (1995) Tools for marking plant disease and pest resistance genes: a review, agronomie 15:3–19

    Google Scholar 

  • Lefebvre V, Palloix A, Rives M (1993) Nuclear RFLP between pepper cultivars (Capsicum annuum L.). Euphytica 71:189–199

    Google Scholar 

  • Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121

    Google Scholar 

  • Leonards-Schippers C, Gieffers W, Schäfer-Pregl R, Ritter E, Knapp SJ, Salamini F, Gebhardt C (1994) Quantitative resistance to Phytophthora infestans in potato — a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77

    Google Scholar 

  • Maisonneuve B, Bellec Y, Anderson P, Michelmore RW (1994) Rapid mapping of two genes for resistance to downy mildew from Lactuca serriola to existing clusters of resistance genes. Theor Appl Genet 89:96–104

    Google Scholar 

  • Matsuoka K (1984) Melhoramento de pimentão e pimenta visando à resistência a doenças fúngicas. Forme Agropecuário Belo Horizonte 10:49–52

    Google Scholar 

  • Molot PM, Pochard E, Mas P (1985) Le capsidiol conditionne-t-il la résistance du piment à Phytophthora capsici? Phytopathol Medit 24:249–254

    Google Scholar 

  • Nienhuis J, Helentjaris T, Slocum M, Ruggero B, Schaefer A (1987) Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27:797–803

    Google Scholar 

  • Nodari RO, Tsai SM, Guzman P, Gilbertson RL, Gepts P (1993) Toward an integrated linkage map of common bean. III. Mapping genetic factors controlling host-bacteria interactions. Genetics 134:341–350

    Google Scholar 

  • Palloix A, Daubèze A-M, Pochard E (1988a) Time sequences of root infection and resistance expression in an artificial inoculation method of pepper with Phytophthora capsici. J. Phytopathol 123:12–24

    Google Scholar 

  • Palloix A, Daubèze A-M, Pochard E (1988b) Phytophthora root rot of pepper — influence of host genotype and pathogen strain on the inoculum density-disease severity relationships. J. Phytopathol 123:25–33

    Google Scholar 

  • Palloix A, Daubèze A-M, Phaly T, Pochard E (1990) Breeding transgressive lines of pepper for resistance to Phytophthora capsici in a recurrent selection system. Euphytica 51:141–150

    Google Scholar 

  • Peter KV, Goth RW, Webb RE (1984) Indian hot peppers as new sources of resistance to bacterial wilt, Phytophthora root-rot, and root knot nematode. HortScience 19:277–278

    Google Scholar 

  • Pochard E (1970) Description des trisomiques de piment (Capsicum annuum L.) obtenus dans la descendance d'une plante haploïde. Ann Amélior Plant 20:233–256

    Google Scholar 

  • Pochard E, Daubèze A-M (1980) Recherche et évaluation des composantes d'une résistance polygénique: la résistance du piment à Phytophthora capsici. Ann Amélior Plant 30:377–398

    Google Scholar 

  • Pochard E, Clerjeau M, Pitrat M (1976) La résistance du piment, Capsicum annuum L. à Phytophthora capsici Leon. I. Mise en évidence d'une induction progressive de la résistance. Ann Amélior Plant 26:35–50

    Google Scholar 

  • Pochard E, Molot PM, Dominguez G (1983) Etude de deux nouvelles sources de résistance à Phytophthora capsici Leon, chez le piment: confirmation de l'existence de trois composantes distinctes dans la résistance. Agronomie 3:333–342

    Google Scholar 

  • Reifschneider FJB, Café-Filho AC, Rego AM (1986) Factors affecting expression of resistance in pepper (Capsicum annuum) to blight caused by Phytophthora capsici in screening trials. Plant Pathol 35:451–456

    Google Scholar 

  • Reifschneider FJB, Boiteux LS, Della Vecchia PT, Poulos JM, Kuroda N (1992) Inheritance of adult-plant resistance to Phytophthora capsici in pepper. Euphytica 62:45–49

    Google Scholar 

  • Robertson DS (1989) Understanding the relationship between qualitative and quantitative genetics. In: Helentjaris T, Burr B (eds) Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 81–87

    Google Scholar 

  • Saini SS, Sharma PP (1978) Inheritance of resistance to fruit rot (Phytophthora capsici Leon.) and induction of resistance in bell pepper (Capsicum annuum L.). Euphytica 27:721–723

    Google Scholar 

  • SAS Institute Inc (1989) SAS/STAT User's Guide, Version 6, 4th edn. SAS Institute Inc, North Carolina Cary

    Google Scholar 

  • Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Mapping and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70:648–659

    Google Scholar 

  • Smith PG, Kimble KA, Grogan RG, Millett AH (1967) Inheritance of resistance in peppers to Phytophthora root rot. Phytopathology 57:377–379

    Google Scholar 

  • Snedecor GW, Cochran WG (1957) Méthodes statistiques (Traduction de Statistical methods); 6ème édition. The Iowa State University Press. Ames, Iowa, USA

    Google Scholar 

  • Wang GL, Mackill DJ, Bonman JM, McCouch SR, Champoux MC, Nelson RJ (1994) RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics 136:1421–1434

    Google Scholar 

  • Yoon JY, Green SK, Tschanz AT, Tsou SCS, Chang LC (1989) Pepper improvement in the tropics: problems and the AVRDC approach. In: Proc Int Symp Integrated Management Practices — Tomato and Pepper Production in the Tropics. 21–26/03/1988; AVRDC, Shanhua, Tainan, Taiwan, pp 86–98

    Google Scholar 

  • Young ND, Danesh D, Menancio-Hautea D, Kumar L (1993) Mapping oligogenic resistance to powdery mildew in mungbean with RFLPs. Theor Appl Genet 87:243–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Koornneef

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefebvre, V., Palloix, A. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper — Phytophthora capsici Leonian. Theoret. Appl. Genetics 93, 503–511 (1996). https://doi.org/10.1007/BF00417941

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417941

Key words

Navigation