Skip to main content
Log in

Stability of solitary waves in dispersive media described by a fifth-order evolution equation

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of the existence and dynamical stability of solitary wave solutions to a fifth-order evolution equation, generalizing the well-known Korteweg-de Vries equation, is treated. The theoretical framework of the paper is largely based on a recently developed version of positive operator theory in Fréchet spaces (which is used for the existence proof) and the theory of orbital stability for Hamiltonian systems with translationally invariant Hamiltonians. The validity of sufficient conditions for stability are established. The shape of solitary waves under analysis are determined by a numerical solution of the boundary-value problem followed by a correction using the Picard method of 4–12 orders of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelouhab, L., Bona, J.L., Felland, M., and Saut, J.-C. (1989). Non-local models for nonlinear, dispersive waves. Phys. D, 40, 360–392.

    Google Scholar 

  • Albert, J.P., and Bona, J.L. (1989). Total positivity and the stability of internal waves in stratified fluids of finite depth. Report No. AML 47, Penn State University Report Series.

  • Albert, J.P., Bona, J.L., and Henry D.B. (1987). Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Phys. D, 24, 343–366.

    Google Scholar 

  • Amann, H. (1976). Fixed-point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev., 18, 620–709.

    Google Scholar 

  • Amick, C.J., and Kirchgässner, K. (1989). A theory of solitary water waves in the presence of surface tension. Arch. Rational Mech. Anal., 105, 1–49.

    Google Scholar 

  • Amick, C.J., and Toland, J.F. (1981a). On solitary water of finite amplitude. Arch. Rational Mech. Anal., 76, 9–95.

    Google Scholar 

  • Amick, C.J., and Toland, J.F. (1981b). On periodic water waves in the long-wave limit. Philos. Trans. Roy. Soc. London Ser. A, 303, 633–673.

    Google Scholar 

  • Amick, C.J., and Turner, R.E.L. (1986). A global theory of internal solitary waves in two-fluid systems. Trans. Amer. Math. Soc., 298, 431–484.

    Google Scholar 

  • Amick, C.J., and Turner, R.E.L. (1989). Small internal waves in two-fluid systems. Arch. Rational Mech. Anal., 108, 111–139.

    Google Scholar 

  • Bardos, C. (1971). A regularity theorem for parabolic equations. J. Funct. Anal., 7, 311–322.

    Google Scholar 

  • Beale, J.T. (1977). The existence of solitary water waves. Comm. Pure Appl. Math., 30, 373–389.

    Google Scholar 

  • Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25, 241–270.

    Google Scholar 

  • Benjamin, T.B. (1972). The stability of solitary waves. Proc. Roy. Soc. London Ser. A, 328, 153–183.

    Google Scholar 

  • Benjamin, T.B., Bona, J.L., and Bose, D.K. (1988). Solitary-wave solutions of nonlinear problems. Report No. AML 30, Penn State University Report Series.

  • Bennet, D.P., Brown, R.W., Stansfield, S.E., Stroughair, J.D., and Bona, J.L. (1983). The stability of internal solitary waves. Math. Proc. Cambridge Philos. Soc., 94, 351–379.

    Google Scholar 

  • Bona, J.L. (1972). Fixed-Point Theorems for Fréchet Spaces. Lecture Notes in Mathematics, Vol. 280. Springer-Verlag, Berlin, pp. 219–222.

    Google Scholar 

  • Bona, J.L. (1975). On the stability of solitary waves. Proc. Roy. Soc. London Ser. A, 344, 363–374.

    Google Scholar 

  • Bona, J.L., and Sachs, R.L. (1988). Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Comm. Math. Phys., 118, 15–29.

    Google Scholar 

  • Bona, J.L., and Sachs, R.L. (1989). The existence of internal solitary waves in a two-fluid system near the KdV limit. Geophys. Astrophys. Fluid Dynamics, 47, 25–51.

    Google Scholar 

  • Bona, J.L., Bose, D.K., and Benjamin, T.B. (1976). Solitary-Wave Solutions for Some Model Equations for Waves in Nonlinear Dispersive Media. Lecture Notes in Mathematics, Vol. 503. Springer-Verlag, Berlin, pp. 207–218.

    Google Scholar 

  • Bona, J.L., Bose, D.K., and Turner, R.E.L. (1983). Finite amplitude steady waves in stratified fluids. J. Math. Pures Appl., 62, 389–440.

    Google Scholar 

  • Bona, J.L., Souganidis, P.E., and Strauss, W.A. (1987). Stability and instability of solitary waves of Korteweg-de Vries type. Proc. Roy. Soc. London Ser. A, 411, 395–412.

    Google Scholar 

  • Boyd, J.P. (1991). Weakly non-local solitons for capillary-gravity waves: fifth-degree Korteweg-de Vries equation. Phys. D, 48, 129–146.

    Google Scholar 

  • Courant, R., and Hilbert, D. (1953). Methods of Mathematical Physics, Vol. 1. Interscience, New York.

    Google Scholar 

  • Dugundji, J. (1951). An extension of Tietze's theorem. Pacific J. Math., 1, 353–367.

    Google Scholar 

  • Friedrichs, K.O., and Hyers, D.H. (1954). The existence of solitary waves. Comm. Pure Appl. Math., 7, 517–550.

    Google Scholar 

  • Granas, A. (1972). The Leray-Shauder index and the fixed-point theory for arbitrary ANRs. Bull. Math. Soc. France, 100, 209–228.

    Google Scholar 

  • Grillakis, M., Shatah, J., and Strauss, W. (1987). Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal., 74, 160–197.

    Google Scholar 

  • Hunter, J., and Sheurle, J. (1988). Existence of perturbed solitary wave solutions to a model equation for water waves. Phys. D, 32, 253–268.

    Google Scholar 

  • Il'ichev, A.T., and Semenov, A.Yu. (1991). Stability of subcritical solitary wave solutions to fifth-order evolution equation. Preprint No. 28, General Physics Institute, U.S.S.R. Academy of Science, Moscow.

    Google Scholar 

  • Kawahara, T. (1972). Oscillatory solitary waves in dispersive media. J. Phys. Soc. Japan, 33, 260–264.

    Google Scholar 

  • Keady, G., and Norbury, J. (1978). On the existence theory for irrotational water waves. Math. Proc. Cambridge Philos. Soc., 83, 137–157.

    Google Scholar 

  • Krasnoselskii, M.A. (1964). Positive Solutions of Operator Equations. Nordhoff, Amsterdam.

    Google Scholar 

  • Krasovskii, Yu.P. (1961). On the theory of steady state waves of large amplitude. U.S.S.R. Comput. Math. and Math. Phys., 1, 996–1018.

    Google Scholar 

  • Lavrentiev, M.A. (1947). On the theory of long waves. Dokl. Akad. Nauk Ukrain. SSR, 8, 13–69 (in Ukranian).

    Google Scholar 

  • Leray, J., and Shauder, J. (1934). Topologie et equations fonctionelles. Ann. Sci. École Norm. Sup., 51, 45–78.

    Google Scholar 

  • Lions, J.-L. (1969). Quelques méthodes de résolution des problemès aux limites non-linéaries. Dunod, Paris.

    Google Scholar 

  • Lions, J.-L., and Magenes, E. (1968). Problemès aux limites non homogènes et applications, Vol. 1. Dunod, Paris.

    Google Scholar 

  • Marchenko, A.V. (1988). Long waves in a shallow liquid beneath an ice sheet. Prikl. Mat. Mekh., 52, 230–235 (in Russian).

    Google Scholar 

  • Nagumo, M. (1951). Degree of mapping in convex linear topological spaces. Amer. J. Math., 73 497–511.

    Google Scholar 

  • Pomeau, Y., Ramani, A., and Grammaticos, B. (1988). Structural stability of the KdV solitons under a singular perturbation. Phys. D, 31, 127–134.

    Google Scholar 

  • Rozhdestvensky, B.L., and Yanenko, N.N. (1983). Systems of Quasi-Linear Equations. American Mathematical Society Monograph 55. American Mathematical Society, Providence, RI.

    Google Scholar 

  • Saut, J.-C. (1979). Sur quelques généalizations de l'équation de Korteweg-de Vries. J. Math. Pures Appl., 58, 21–61.

    Google Scholar 

  • Saut, J.-C., and Temam, R. (1976). Remarks on the Korteweg-de Vries equation. Israel J. Math., 24, 78–87.

    Google Scholar 

  • Ter-Krikorov, A.M. (1960). The existence of periodic waves which degenerate into a solitary wave. J. Appl. Math. Mech., 24, 930–939.

    Google Scholar 

  • Ter-Krikorov, A.M. (1961). Surface solitary wave in fluid with vortices. Vych. Mat. Mat. Fiz., 1, 1077–1088 (in Russian).

    Google Scholar 

  • Ter-Krikorov, A.M. (1963). Théorie exacte des ondes longues stationaries dans un liquide hétérogène. J. Mèc., 2, 351–376.

    Google Scholar 

  • Voliak, K.I., Semenov, A.Yu., and Shugan, I.V. (1989). Interaction between surface and internal waves. Gen. Phys. Inst. USSR Acad. Sci. Proc., 18, 3–32 (in Russian).

    Google Scholar 

  • Wenstein, M.I. (1986). Liapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math., 39, 51–68.

    Google Scholar 

  • Wenstein, M.I. (1987). Existence and dynamic stability of solitary wave solutions of equations, arising in long wave propagation. Comm. Partial Differential Equations, 12, 1133–1173.

    Google Scholar 

  • Yamamoto, Y., and Takizawa, E.I. (1981). On a solution of non-linear evolution equation of fifth order. J. Phys. Soc. Japan, 50, 1421–1422.

    Google Scholar 

  • Zufiria, J.A. (1987). Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth. J. Fluid. Mech., 184, 183–206.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Roger Temam

Rights and permissions

Reprints and permissions

About this article

Cite this article

Il'ichev, A.T., Semenov, A.Y. Stability of solitary waves in dispersive media described by a fifth-order evolution equation. Theoret. Comput. Fluid Dynamics 3, 307–326 (1992). https://doi.org/10.1007/BF00417931

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417931

Keywords

Navigation