Skip to main content
Log in

Pullulanase, an enzyme of starch catabolism, is associated with the outer membrane of Klebsiella

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Late-log phase cells of Klebsiella sp. 5246 could be converted into spheroplasts with a yield of better than 90% by ethylenediamine tetraacetate/lysozyme treatment in osmotically stabilizing media. Membrane fragments obtained after ultrasonication of spheroplasts were separated by centrifugation to sedimentation equilibrium on a sucrose density gradient. A light membrane fraction with a buoyant density of 1.17±0.02g/cm3 was sought and found to contain the enzymes NADH oxidase, succinate dehydrogenase and D-lactate dehydrogenase. A heavy membrane fraction having a buoyant density of 1.23 ±0.01g/cm3 was characterized by phospholipase A1 activity and lipopolysaccharide content. By analogy to other gram-negative bacteria, the light and the heavy fraction were assigned, respectively, to the cytoplasmic and the outer membrane of Klebsiella sp. 5246.

The organism produced pullulanase in a cellbound form during the exponential phase of growth on soluble starch. Pullulanase was localized exclusively on the outer membrane. Pullulanase is the second protein of the outer membrane with defined enzyme function to become known among gram-negative bacteria, the other one being phospholipase A1.

What had been inferred from physiological studies of growth characteristics on various carbon sources can now be proven directly: Pullulanase implicated in the utilization of branched α-glucans in Klebsiella is capable of acting on macromolecular substrates in the environment of the cell by virtue of its association with the outer membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EDTA:

ethylenediamine tetraacetate

SDS:

sodium dodecyl sulphate

OD:

optical density

EC 3.2.1. 23:

β-galactosidase or β-D-galactoside galactohydrolase

EC 1.1.1.28:

D-lactate dehydrogenase or D-lactate: NAD+ oxidoreductase

EC 3.2.1.17:

lysozyme or mucopeptide N-acetylmuramoylhydrolase

EC 2.4.1.1:

maltodextrin phosphorylase or 1,4-α-D-glucan: orthophosphate α-glucosyltransferase

EC 1.6.99.3:

NADH oxidase or NADH: (acceptor) oxidoreductase

EC 3.1.1.32:

phospholipase A1 or phosphatide 1-acylhydrolase

EC 3.2.1.41:

pullulanase or pullulan 6-glucanohydrolase

EC 1.3.99.1:

succinate dehydrogenase or succinate: (acceptor) oxidoreductase

References

  • Ashwell, G.: New colorimetric methods of sugar analysis. In: Methods in enzymology, Vol. VIII (E. F. Neufeld, V. Ginsburg, eds.), pp. 85–95. New York-London: Academic Press (1966)

    Google Scholar 

  • Bender, H.: Pullulanase von Aerobacter aerogenes. Arch. Mikrobiol. 71, 331–352 (1970)

    Google Scholar 

  • Bender, H.: Cyclodextrin-Glucanotransferase von Klebsiella pneumoniae. Arch. Microbiol. 111, 271–282 (1977)

    Google Scholar 

  • Bender, H., Wallenfels, K.: Untersuchungen an Pullulan. II. Spezifischer Abbau durch ein bakterielles Enzym. Biochem. Z. 334, 79–95 (1961)

    Google Scholar 

  • Bender, H., Wallenfels, K.: Pullulanase (an amylopectin and glycogen debranching enzyme) from Aerobacter aerogenes. In: Methods in enzymology, Vol. VIII (E. F. Neufeld, V. Ginsburg, eds.), pp. 555–559. New York-London: Academic Press 1966

    Google Scholar 

  • Braun, V., Hantke, K.: Biochemistry of bacterial cell envelopes. Ann. Rev. Biochem. 34, 89–121 (1974)

    Google Scholar 

  • Collins, M. L. P., Niederman, R. A.: Membranes of Rhodospirillum rubrum: Isolation and physicochemical properties of membranes from aerobically grown cells. J. Bacteriol. 126, 1316–1325 (1976)

    Google Scholar 

  • Costerton, J. W., Ingram, J. M., Cheng, K. J.: Structure and function of the cell envelope of gram-negative bacteria. Bact. Rev. 38, 87–110 (1974)

    Google Scholar 

  • Devoe, I. W., Gilchrist, J. E.: Localization of tetramethylphenylendiamine oxidase in the outer cell wall layer of Neisseria meningitidis. J. Bacteriol. 128, 144–148 (1976)

    Google Scholar 

  • Dewald, B., Dulaney, J. T., Touster, O.: Solubilization and polyacrylamide gel electrophoresis of membrane enzymes with detergents. In: Methods in enzymology, Vol. XXXII (S. Fleischer, L. Packer, eds.), pp. 82–91. New York-London: Academic Press 1975

    Google Scholar 

  • Ding, D. H., Kaplan, S.: Separation of inner and outer membranes of Rhodopseudomonas spheroides. Prep. Biochem. 6, 61–79 (1976)

    Google Scholar 

  • Hancock, R. E. W., Hantke, K., Braun, V.: Iron transport in Escherichia coli K-12: Involvement of the colicin B receptor and of a citrate-inducible protein. J. Bacteriol 127, 1370–1375 (1976)

    Google Scholar 

  • Hantke, K.: Phage T6-Colicin K receptor and nucleoside transport in Escherichia coli. FEBS-Letters 70, 109–112 (1976)

    Google Scholar 

  • Hasin, M., Rottem, S., Razin, S.: The outer membrane of Proteus mirabilis. I. Isolation and characterization of the outer and cytoplasmic membrane fractions. Biochim. Biophys. Acta 375, 381–394 (1975)

    Google Scholar 

  • Henning, U.: Determination of cell shape in bacteria. Ann. Rev. Micribiol 29, 45–60 (1975)

    Google Scholar 

  • Inouye, M.: A three-dimensional molecular assembly model of a lipoprotein from the Escherichia coli outer membrane. Proc. Nat. Acad. Sci. 71, 2396–2400 (1974)

    Google Scholar 

  • Kainuma, K., Wako, K., Kobayashi, S., Nogami, A., Suzuki, S.: Purification and some properties of a novel maltohexaoseproducing exo-amylase from Aerobacter aerogenes. Biochim. Biophys. Acta 410, 333–346 (1975)

    Google Scholar 

  • Lin, E. C. C.: Glycerol dissimilation and its regulation in bacteria. Ann. Rev. Microbiol. 30, 535–578 (1976)

    Google Scholar 

  • Linder, D., Kurz, G., Bender, H., Wallenfels, K.: 1,4-α-Glucan phosphorylase from Klebsiella pneumonicae. Purification, subunit structure and amino acid composition. Europ. J. Biochem. 70, 291–303 (1976)

    Google Scholar 

  • Lowry, D. H., Rosebrough, N. J., Farr, A. L., Randall, R.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Manning, P. A., Reeves, P.: Outer membrane of Escherichia coli K-12: Tsx mutants (resistant to bacteriophage T6 and colicin K) lack an outer membrane protein. Biochem. Biophys. Res. Commun. 71, 466–471 (1976)

    Google Scholar 

  • Martin, H. H., Preuser, H. J., Verma, J. P.: Über die Oberflächenstruktur von Myxobacterien. Arch. Mikrobiol. 62, 72–84 (1968)

    Google Scholar 

  • Miura, T., Mizushima, S.: Separation and properties of outer and cytoplasmic membranes in Escherichia coli. Biochim. Biophys. Acta 193, 268–276 (1969)

    Google Scholar 

  • Nakae, T.: Outer membrane of Salmonella: Isolation of protein complex that produces transmembrane channels. J. Biol. Chem. 251, 2176–2178 (1976)

    Google Scholar 

  • Norrman, J., Wöber, G.: Comparative biochemistry of α-glucan utilization in Pseudomonas amyloderamosa and Pseudomonas saccharophila. Arch. Microbiol. 102, 253–260 (1975)

    Google Scholar 

  • Osborn, M. J., Gander, J. E., Parisi, E., Carson, J.: Mechanism of assembly of the outer membrane of Salmonella typhimurium. J. Biol. Chem. 247, 3962–3972 (1972)

    Google Scholar 

  • Palmer, T. N., Wöber, G., Whelan, W. J.: The pathway of exogenous and endogenous carbohydrate utilization in Escherichia coli: A dual function for the enzymes of the maltose operon. Europ. J. Biochem. 39, 601–612 (1973)

    Google Scholar 

  • Robyt, J. F., Whelan, W. J.: The α-amylases. In: Starch and its derivatives (J. A. Radley, ed.), pp. 430–476. London: Chapman and Hall 1968

    Google Scholar 

  • Salton, M. R. J., Tomasz, A. (eds.): Mode of action of antibiotics on microbial walls and membranes. Ann. N. Y. Acad. Sci. 235, 1–620 (1974)

    Google Scholar 

  • Thanner, F., Palm, D., Shaltiel, S.: Hydrophobic and biospecific chromatography in the purification of maltodextrin phosphorylase from Escherichia coli. FEBS Letters 55, 178–182 (1975)

    Google Scholar 

  • Wallenfels, K.: β-Galactosidase. In: Methods in enzymology, Vol. V (S. P. Colowick, N. O. Kaplan, eds.), pp. 212–223. New York-London: Academic Press 1962

    Google Scholar 

  • Weber, K., Pringle, J. R., Osborn, M.: Measurements of molecular weights by electrophoresis on SDS-acrylamide gels. In: Methods in enzymology, Vol. XXVI (C. H. W. Hirs, S. N. Timasheff, eds.), pp. 3–27. New York-London: Academic Press 1972

    Google Scholar 

  • Withold, G., V. Heerikhuizen, Heerikhuizen H., De Leij, L.: How does lysozyme penetrate through the bacterial outer membrane? Biochim. Biophys. Acta 443, 534–544 (1976)

    Google Scholar 

  • Wöber, G.: Pullulanase is a characteristic of many Klebsiella species and functions in the degradation of starch. Europ. J. Appl. Microbiol. 3, 71–80 (1976)

    Google Scholar 

  • Yamato, I., Ankaru, Y., Hirosawa, K.: Cytoplasmic membrane vesicles of Escherichia coli. J. Biochem. (Tokyo) 77, 705–718 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wöhner, G., Wöber, G. Pullulanase, an enzyme of starch catabolism, is associated with the outer membrane of Klebsiella . Arch. Microbiol. 116, 303–310 (1978). https://doi.org/10.1007/BF00417856

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417856

Key words

Navigation