Skip to main content
Log in

Structure and function of the TRP3 gene of Saccharomyces cerevisiae: Analysis of transcription, promoter sequence, and sequence coding for a glutamine amidotransferase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The structure and function of the TRP3 gene of Saccharomyces cerevisiae were analyzed. Subcloning of an original 4.8 kb BamHI DNA fragment, carrying the yeast TRP3 gene, allowed for a localization of the gene on a 2.5 kb ClaI/BamHI fragment. Transcription was found to proceed from the ClaI site towards the BamHI site. Three major transcription start sites were determined at positions −92, −87, and −81 by S1-mapping. The synthesis of the TRP3 gene is regulated by the general control, and was found to take place- at the transcriptional level. The sequence of the 5′-noncoding region up to position −400 and part of the coding region to position 840 were determined. The 5′-noncoding region contains sequences common to most amino acid biosynthetic genes known so far, namely a presumptive ribosome binding site, “Goldberg-Hogness boxes”, and a consensus sequence, possibly involved in the general control. For the coding region a single open reading frame was found. The deduced amino acid sequence was aligned with homologous amino acid sequences of Neurospora crassa, Pseudomonas putida and Escherichia coli. The exceptionally high homology (40–60%) between these sequences led us to postulate that the TRP3 gene product is of the structure NH2-glutamine amidotransferase-indole-3-glycerol-phosphate synthase-COOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aebi M, Niederberger P, Hütter R (1982) Curr Genet 5:39–46

    Google Scholar 

  • Andreadis A, Yun-Pung H, Kohlhaw GB, Schimmel P, (1982) Cell 31:319–325

    Google Scholar 

  • Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408–1412

    Google Scholar 

  • Bantle JA, Maxwell IH, Hahn WE (1976) Anal Biochem 72:413–427

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3018–3025

    Google Scholar 

  • Berk AJ, Sharp PA (1977) Cell 12:721–732

    Google Scholar 

  • Casey J, Davidson N (1977) Nucleic Acids Res 4:1539–1552

    Google Scholar 

  • Dobson MJ, Tuite ME, Roberts NA, Kingsman AJ, Kingsman SM (1982) Nucleic Acids Res 10:2625–2637

    Google Scholar 

  • Dobson MJ, Tuite MF, Mellor J, Roberts NA, King RM, Burke DC, Kingsman AJ, Kingsman SM (1983) Nucleic Acids Res 11:2289–2302

    Google Scholar 

  • Donahue TF, Farabough PJ, Fink GR (1982) Gene 18:47–59

    Google Scholar 

  • Donahue TF, Daves RS, Lucchini G, Fink GR (1983) Cell 32:89–98

    Google Scholar 

  • Faye G, Leung DW, Tatchel K, Hall BD, Smith M (1981) Proc Natl Acad Sci USA 78:2258–2262

    Google Scholar 

  • Hinnebusch AG, Fink GR (1983) J Biol Chem 258:5238–5247

    Google Scholar 

  • Hsiao C, Carbon C (1979) Proc Natl Acad Sci USA 76:3829–3833

    Google Scholar 

  • Hütter R, DeMoss JA (1967a) Genetics 55:241–247

    Google Scholar 

  • Hütter R, DeMoss JA (1967b) J Bacteriol 94:1896–1907

    Google Scholar 

  • Kawamura M, Klein PS, Goto Y, Zalkin H, Hendrikson RL (1978) J Biol Chem 253:4659–4668

    Google Scholar 

  • Kozak M (1978) Cell 15:1109–1123

    Google Scholar 

  • Kozak M (1981) Nucleic Acids Res 9:5233–5252

    Google Scholar 

  • Landolt-Sydler M-Y (1974) Arch Genet 47:65–85

    Google Scholar 

  • Maxam A, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • McDonell MW, Simon MN, Studier WF (1977) J Mol Biol 110:119–146

    Google Scholar 

  • McKnight SL, Kingsbury R (1982) Science 217:316–324

    Google Scholar 

  • Miozzari G, Niederberger P, Hütter R (1978) J Bacteriol 134:48–59

    Google Scholar 

  • Mortimer RK, Hawthorne DC (1966) Genetics 53:165–173

    Google Scholar 

  • Niederberger P, Miozzari G, Hütter R (1981) Mol Cell Biol 1:584–593

    Google Scholar 

  • Philippsen P, Thomas M, Kramer RA, Davis RW (1978) J Mol Biol 123:387–404

    Google Scholar 

  • Rave N, Crkvenjaker R, Boedtker H (1979) Nucleic Acids Res 6:3559–3567

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) J Mol Biol 113:237–251

    Google Scholar 

  • Rubtov PM, Musakhanov MM, Zakharyev VM, Kramer AS, Skryabin KG, Bayer AA (1980) Nucleic Acids Res 8:5779–5812

    Google Scholar 

  • Schechtman MG, Yanofsky C (1983) J Mol Appl Genet 2:83–99

    Google Scholar 

  • Schürch-Rathgeb Y (1972) Arch Genet 45:129–192

    Google Scholar 

  • Sherman F, Fink GR, Lukins HB (1970) Methods in Yeast Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Struhl K (1982) Proc Natl Acad Sci USA 79:7385–7389

    Google Scholar 

  • Tabak HF, Flavell RA (1978) Nucleic Acids Res 5:2321–2332

    Google Scholar 

  • Tabak HIT, Hecht NB, Menke HH, Hollenberg CP (1979) Curr Genet 1:33–43

    Google Scholar 

  • Thomas PS (1980) Proc Natl Acad Sci USA 77:5201–5205

    Google Scholar 

  • Thuriaux P, Heyer W -D, Strauss A (1982) Curr Genet 6:13–18

    Google Scholar 

  • Tschumper G, Carbon J (1980) Gene 10:157–166

    Google Scholar 

  • Wahl GM, Stern M, Stark GR (1979) Proc Natl Acad Sci USA 76:3683–3687

    Google Scholar 

  • Weaver RF, Weissmann C (1979) Nucleic Acids Res 5:1175–1193

    Google Scholar 

  • Yanofsky C, Platt T, Crawford JP, Nichols BP, Christie GE, Horowitz H, van Cleemput M, Wu AM (1981) Nucleic Acids Res 9:6647–6668

    Google Scholar 

  • Zalkin H, Yanofsky C (1982) J Biol Chem 257:1491–1500

    Google Scholar 

  • Zitomer RS, Hall BD (1976) J Biol Chem 251:6320–6326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aebi, M., Furter, R., Prand, F. et al. Structure and function of the TRP3 gene of Saccharomyces cerevisiae: Analysis of transcription, promoter sequence, and sequence coding for a glutamine amidotransferase. Curr Genet 8, 165–172 (1984). https://doi.org/10.1007/BF00417812

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417812

Key words

Navigation