Skip to main content
Log in

Effects of glycerol on alcohol fermentation. Inhibition mechanism and diffusion limitations

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Batch alcohol fermentations have been carried out varying the starting level of glycerol in the broth and keeping constant all the other fermentation parameters, in order to study the effect of the accumulation of this metabolite on the fermentation kinetics. A linear slow decrease of the maximum specific ethanol productivity with increasing glycerol level has been followed by a sharp fall of this parameter over a glycerol concentration threshold. A kinetic study through unstructured integrated models demonstrates that, at low concentrations, glycerol behaves as a non competitive inhibitor of fermentation, while, over a concentration threshold (105 kg/m3), an additional effect takes place, likely ascribable to diffusion limitations provoked by excess viscosity of the broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c g kg/m3 :

glycerol concentration

c p kg/m3 :

ethanol concentration

c p,m kg/m3 :

ethanol concentration over which ethanol production is stopped

c s kg/m3 :

substrate (glucose) concentration

c s,o kg/m3 :

starting substrate concentration

c x kg/m3 :

biomass concentration

c x,o kg/m3 :

starting biomass concentration

D L cm2/s:

diffusivity

k :

Constantin eq. (14)

k 1 kg/kgh:

a constant in Ciftci model

k 2 m3/kg:

a constant in Ciftci model

K g kg/m3 :

glycerol inhibition constant

K p kg/m3 :

product inhibition constant

K s kg/m3 :

saturation constant

M kg/kmol:

molecular weight

t h:

fermentation time

T K:

temperature

T c K:

parameter in eq. (13)

V cm3/mol:

molar volume

V c cm3/mol:

parameter in eq. (13)

x :

molar fraction

X :

solvent association number

Y ps :

product yield on substrate

Y xp :

biomass yield on product

Y xs :

biomass yield on substrate

α :

parameter in eq. (3)

α 1 :

parameter in eq. (4)

β :

parameter in eq. (3)

β 1 :

parameter in eq. (4)

γ m3/kg:

parameter in eq. (3)

γ 1 m3/kg:

parameter in eq. (4)

δ 1 kg/m3 :

parameter in eq. (3)

ɛ :

parameter in eqs. (12) and (13)

ɛ 1 :

parameter in eq. (3)

η m mPa · s:

broth viscosity

ν kg/kgh:

specific productivity

ν max kg/kgh:

maximum specific productivity

ν max0 kg/kgh:

maximum specific productivity at c s,o=0

ν max′ kg/kgh:

starting specific productivity

ψ w,g :

interaction parameter

ω :

degree of substrate inhibition on ethanol formation

1:

glycerol competitive-type inhibition

2:

glycerol uncompetitive-type inhibition

3:

glycerol non competitive-type inhibition

w :

water

g :

glycerol

m :

mixture

s :

substrate

p :

product

References

  1. Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3 (1949) 371–394

    Google Scholar 

  2. Dawes, E.A.: Quantitative problems in biochemistry, 4th ed., pp. 106–174, E. & S. Livingstone, Edinburgh and London (1967)

    Google Scholar 

  3. Laidler, K.J.: The chemical kinetics of enzyme action, pp. 30–93, Oxford University Press (1958)

  4. Roels, J.A.: Energetics and kinetics in biotechnology, Chap. 4, pp. 75–98, Elsevier Biomedical, Amsterdam (1983)

    Google Scholar 

  5. Pirt, S.J.: The maintenance energy of bacteria in growing culture. Proc. R. Soc. Lond. Ser. B 163 (1965) 224

    Google Scholar 

  6. Converti, A.; Del Borghi, M.: Integrated unstructured models for the study of substrate and product inhibitions in batch corn starch hydrolysate fermantations. Starch/Stärke, submitted 1995

  7. Bergmeyer, H.U.; Bernt, E.: in Methoden der enzymatischen Analyse, Chemie, Weinheim, Vol. 2, p. 1121 (1975)

    Google Scholar 

  8. Tyagi, R.D.; Ghose, T.K.: Batch and multistage continuous ethanol fermentation of cellulose hydrolysate and optimum design of fermentor by graphical analysis. Biotechnol. Bioeng. 22 (1980) 1907–1928

    Google Scholar 

  9. Tyagi, R.D.; Ghose, T.K.: Studies on immobilized Saccharomyces cerevisiae I. Analysis of continuous rapid ethanol fermentation in cell reactor. Biotechnol. Bioeng. 24 (1982) 781

    Google Scholar 

  10. Levenspiel, O.: The Monod equation: a revisit and a generalization to product inhibition situation. Biotechnol. Bioeng. 22 (1980) 1671–1687

    Google Scholar 

  11. Ciftci, C.; Constantinides, A.; Wang, S.S.: Biotechnol. Bioeng. 25 (1983) 2007

    Google Scholar 

  12. Teja, A.S.; Rice, P.: Generalized corresponding states method for the viscosities of liquid mixtures. Ind. Eng. Chem. Fudam. 20 (1981) 77–81

    Google Scholar 

  13. Teja, A.S.; Rice, P.: The measurement and prediction of the viscosities of some binary liquid mixtures containing n-hexane. Chem. Eng. Sci. 36 (1981) 7–10

    Google Scholar 

  14. Teja, A.S.: A corresponding states equation for saturated liquid densities. I. Applications to LNG. AIChE J. 26 (1980) 337–341

    Google Scholar 

  15. Teja, A.S.; Sandler, S.I.: A corresponding states equation for saturated liquid densities. II. Applications to the calculation of swelling factors of CO2-crude oil systems. AIChE J. 26 (1980) 341–345

    Google Scholar 

  16. Reid, R.C.; Prausnitz, J.M.; Poling, B.E.: The properties of gases and liquids, 4th ed., Cap. 9, pp. 388–490, and Appendix A, pp. 656–732, McGraw-Hill, Singapore (1988)

    Google Scholar 

  17. Sengers, J.V.; Watson, J.T.R.: Improved international formulations for the viscosity and thermal conductivity of water substance. J. Phys. Chem. Ref. Data 15 (1986) 291

    Google Scholar 

  18. Lide D.R.: CRC Handbook of Chemistry and Physics, 71st ed., p. 6.144, CRC Press, Boston (1991)

    Google Scholar 

  19. Wilke; Chang: Am. Inst. Chem. Engrs J. 1 (1955) 264

    Google Scholar 

  20. Perry, R.H.; Chilton, C.H.: Chemical Engineers' Handbook, 5th ed., pp. 3.229–3.234, McGraw-Hill, Kogakusha, J (1969)

    Google Scholar 

  21. Converti, A.; Perego, P.; Del Borghi, M.; Parisi, F.; Ferraiolo, G.: Kinetic considerations about the study of alcoholic fermentations of starch hydrolysate. Biotechnol. Bioeng. 28 (1986) 711–717

    Google Scholar 

  22. Converti, A.; Casagrande, M.; De Giovanni, M.; Rovatti, M.; Del Borghi, M.: Evaluation of glucose diffusion coefficient through cell layers for the kinetic study of an immobilized cell bioreactor. Chem, Eng. Sci., submitted (1994)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Converti, A., Zilli, M., Rovatti, M. et al. Effects of glycerol on alcohol fermentation. Inhibition mechanism and diffusion limitations. Bioprocess Engineering 13, 257–263 (1995). https://doi.org/10.1007/BF00417637

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417637

Keywords

Navigation