Skip to main content
Log in

Some aspects of hydrodynamics in multistage bubble columns

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Hydrodynamic aspects covering the flow regimes and dispersed phase holdup have been investigated in multistage bubble columns using different geometries for the horizontal perforated plates. Air-water, air-kerosene and air-CMC solutions are investigated to cover a wide range in physical properties of liquids. The data show that the plate perforation diameter, plate spacing and the gas flow rate are the principal variables influencing the flow regimes and the dispersed phase holdup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d 0 m:

plate perforation diameter

D m:

column diameter

g m/sec2 :

acceleration due to gravity

H m:

height of the test section

k Pa.sn :

fluid consistency index

n :

flow behaviour index

P m:

interplate spacing

S :

fractional plate free area

U m/s:

superficial phase velocity

Mo :

Morton number (gμ4/ρσ3)

ɛ :

dispersed phase holdup

γ s−1 :

shear rate

μ Pa.s:

viscosity of liquid

ρ Kg/m3 :

density of liquid

σ N/m:

surface tension

app:

apparent

CMC:

carboxymethyl cellulose

g :

gas phase

l:

liquid phase

References

  1. Brauer, H.: Fundamentals of single phase and multiphase flow. Sauerländer, Aarau and Frankfurt/M (1971)

  2. Hines, D.A.: The large scale pressure cycle fermenter configuration. Dechema Monograms, Verlag Chemie, Weinheim. 82 (1978) 55–59

  3. Joshi, J.B. and Sharma, M.M.: Mass transfer characteristics of horizontal sparged contactors. Trans. Inst. Chem. Engrs. 54 (1976) 42–49

    Google Scholar 

  4. Herbrechtsmeier, P. and Steiner, R.: Relativer gasgehalt in blasensäulen-abstromreaktor. Chem. Ing. Tech. 52 (1980) 468–471

    Google Scholar 

  5. Buchholz, H., Buchholz, R., Lücke, J. and Schügerl, K.: Bubble swarm behaviour and gas absorption in non-Newtonian fluids in sparged columns. Chem. Eng. Sci. 33 (1978) 1061–1070

    Google Scholar 

  6. Schügerl, K., Oels, U. and Lücke, J.: Advances in biochemical engineering. ed. by Ghosh, T.K. Fiechter, A. and Blakebrough, N., Springer-Verlag, Berlin. Vol. 7 (1977)

    Google Scholar 

  7. Voigt, J. and Schügerl, K.: Absorption of oxygen in countercurrent multistage bubble columns-I. Aqueous solutions with low viscosity. Chem. Eng. Sci. 34 (1979) 1221–1229

    Google Scholar 

  8. Srinivasa Kannan, C., Subba Rao, S. and Varma, Y.B.G.: A study of able range of operation in multistage fluidised beds. Powder Tech. 78 (1994) 203–211

    Google Scholar 

  9. Schumpe, A. and Deckwer, W.-D.: Gas holdups specific interfacial areas and mass transfer coefficients of aerated carboxymethyl cellulose solutions in a bubble column. Ind. Eng. Chem. Process Des. Dev. 21 (1982) 706–711

    Google Scholar 

  10. Schumpe, A. and Deckwer, W.-D.: Viscous media in tower bioreactors: hydrodynamic characteristics and mass transfer properties. Bioprocess Eng. 2 (1987) 79–94

    Google Scholar 

  11. Yoshida, F. and Akita, K.: Performance of gas bubble columns: volumetric liquid phase mass transfer coefficient and gas holdup. AIChE J 11(1) (1965) 9–17

    Google Scholar 

  12. Ozturk, S.S., Schumpe, A. and Deckwer, W.-D.: Organic liquids in a bubble column: holdups and mass transfer coefficients. AIChE J 33(9) (1987) 1473–1480

    Google Scholar 

  13. Kawagoe, M., Otake, Y. and Robinson, C.W.: Gas phase mixing in bubble columns. J. of Chem. Eng. of Japan 22(2) (1989) 136–142

    Google Scholar 

  14. Zahradnik, J. and Kastanek, F.: Effect of plates on some parameter of a heterogeneous bed in bubble-type flow reactors. Collect. Czech. Chem. Commun. 39(6) (1974) 1419–1429

    Google Scholar 

  15. Chen, B.H., Yang, N.S. and McMillan, A.F.: Gas holdup and pressure drop for air-water flow through plate bubble columns. Can. J. Chem. Eng. 64 (1986) 387–392

    Google Scholar 

  16. Chen, B.H., and Yang, N.S.: Characteristics of a concurrent multistage bubble column. Ind. Eng. Chem. Res. 28 (1989) 1405–1410

    Google Scholar 

  17. Magiera, J.: Longitudinal dispersion of gas in two and three phase flow. Chem. Eng. Commun. 30 (1984) 119–130

    Google Scholar 

  18. Poncin, S., Midoux, N. and Laurent, A.: Hydrodynamics and residence time distribution in a countercurrent slurry bubble column partioned with sieve plates. Proc. IV World Cong. in Chem. Eng. Karlsruhe, Germany (1990) 8.2-11-13

  19. Shah, Y.T., Kelkar, B.G., Godbole, S.P. and Deckwer, W.-D.: Design parameters estimations for bubble column reactors. AIChE J 28(3) (1982) 353–379

    Google Scholar 

  20. Wallis, G.B.: One dimensional two phase flow, McGraw-Hill Book Co., New York. (1969)

    Google Scholar 

  21. Voigt, J., Hecht, V. and Schügerl, K.: Absorption of oxygen in countercurrent multistage bubble column-II. Aqueous solution with high viscosity. Chem. Eng. Sci. 35 (1980) 1317–1323

    Google Scholar 

  22. Hecht, V., Voigt, J. and Schügerl, K.: Absorption of oxygen in countercurrent multistage bubble column-III. Viscoelastic liquids. Comparison of systems with high viscosity. Chem. Eng. Sci. 35 (1980) 1325–1330

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinaya, M., Varma, Y.B.G. Some aspects of hydrodynamics in multistage bubble columns. Bioprocess Engineering 13, 231–237 (1995). https://doi.org/10.1007/BF00417633

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417633

Keywords

Navigation