Skip to main content
Log in

Effects of different amino-group reagents on ribosomal integrity: structural role of lysine residues

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Treatment of 60S subunits from yeast ribosomes with dicarboxylic acid anhydrides (maleic, dimethylmaleic and tetrahydrophtalic), which introduces negatively-charged residues, is accompanied by substantial dissociation of protein components (35–55%). In contrast, acetic anhydride or cyanate, which introduce uncharged groups, cause practically no protein release, even after extensive modification. Therefore, in addition to blocking lysine-RNA interactions, a large change in the electric charge of the proteins appears to be necessary to obtain dissociation. These results seem to indicate that lysine residues are not essential to ribosome integrity, while arginine-RNA interactions should play an important role in the maintenance of ribosomal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petermann, M. L., 1964. The Physical Chemical Properties of Ribosomes, Elsevier, Amsterdam.

    Google Scholar 

  2. Zimmermann, R. A., 1974. In ‘Ribosomes’ (M. Nomura, A. Tissières and P. Lengyel. edit.), Cold Spring Harbor Laboratory, pp. 225–269.

  3. Bielka, H., 1982. The Eukaryotic Ribosome, Springer-Verlag, Berlin.

    Google Scholar 

  4. Faye, G., Sor, F., Glatigny, A., Lederer, F. and Lesquoy, E., 1979. Molec. Gen. Genet. 171: 335–341.

    Google Scholar 

  5. Cotton, F. A., Day, V. W., Hazen, E. E. & Larsen, S., 1973. J. Amer. Chem. Soc. 95: 4834–4840.

    Google Scholar 

  6. Wagner, K. G. & Arfmann, H.-A., 1974. Eur. J. Biochem. 46: 27–34.

    Google Scholar 

  7. Wittmann, H. G., 1983. Ann. Rev. Biochem. 52: 35–65.

    Google Scholar 

  8. Sánchez-Madrid, F. & Ballesta, J. P. G., 1979 Biochem. Biophys. Res. Commun. 91: 643–650.

    Google Scholar 

  9. Traub, P., Mizushima, S., Lowry, C. V. & Nomura, M., 1971. Methods Enzymol. 20: 391–407.

    Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  11. Nieto, M. A. & Palacián, E., 1983. Biochim. Biophys. Acta 7499: 204–210.

    Google Scholar 

  12. Dijk, J. & Littlechild, J., 1979. Methods Enzymol. 49: 481–502.

    Google Scholar 

  13. Knorre, D. G., Pustoshilova, N. M., Teplova, N. M. & Shamovskii, G. G., 1965. Biokhimiya 30: 1218–1224.

    Google Scholar 

  14. Knorre, D. G., Pustoshilova, N. M. & Sevast'yanov, A. P., 1968. Biokhimiya 33: 56–61.

    Google Scholar 

  15. Knorre, D. G. & Shamovsky, G. G., 1967. Biochim. Biophys. Acta 142: 555–558.

    Google Scholar 

  16. Stuart, A. & Khorana, H. G., 1964. J. Biol. Chem. 239: 3885–3892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vioque, A., Hernández, F. & Palacián, E. Effects of different amino-group reagents on ribosomal integrity: structural role of lysine residues. Mol Biol Rep 11, 47–50 (1986). https://doi.org/10.1007/BF00417595

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417595

Keywords

Navigation