Skip to main content
Log in

The stringent response to unacylated tRNA, energy- and temperature-downshift in Bacillus stearothermophilus

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The response of the thermophile Bacillus stearothermophilus to inhibition of tRNA acylation, energy starvation and temperature downshift was characterized. We found that B. stearothermophilus, like other prokaryotic organisms, reacts with the so-called stringent response, which includes the accumulation of the unusual nucleotides guanosine 3′,5′ bis (dipphosphate) [ppGpp] and guanosine 3′-diphosphate, 5′-triphosphate [pppGpp] and concomitantly the reduction of RNA synthesis and growth rate. The amount of (p)ppGpp formed depended on the cause of the stringent response: when tRNA acylation was inhibited (p)ppGpp synthesis was much higher than after energy starvation or temperature downshift whereas RNA synthesis was totally blocked in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boquet PL, Devynck M-A, Monnier C, Fromageot P, Röschenthaler R (1973) Inhibition of stable RNA synthesis by Levallorphan in Escherichia coli. Implication of compounds MS I and MS II. Eur J Biochem 40:31–42

    Article  PubMed  CAS  Google Scholar 

  • Bridger WA, Paranchych W (1978) relA gene control of bacterial glycogen synthesis. Can J Biochem 56:403–406

    Article  PubMed  CAS  Google Scholar 

  • Cashel M, Gallant J (1968) Control of RNA synthesis in Escherichia coli. I. Amino acid dependence of the synthesis of the substrates of RNA polymerase. J Mol Biol 34:317–330

    Article  PubMed  CAS  Google Scholar 

  • Chaloner-Larsson G, Yamazaki H (1976) Synthesis of guanosine 5′-triphosphate, 3′-diphosphate in a spoT strain of Escherichia coli. Can J Biochem 54:935–940

    Article  PubMed  CAS  Google Scholar 

  • Chaloner-Larsson G, Yamazaki H (1978) Effects of the spoT and relA mutation on the synthesis and accumulation of ppGpp and RNA during glucose starvation. Can J Biochem 56:266–272

    Article  Google Scholar 

  • Edlin G, Neuhard J (1967) Regulation of nucleoside triphosphate pools in Escherichia coli. J Mol Biol 24:225–230

    Article  PubMed  CAS  Google Scholar 

  • Fiil NP, Willumsen BM, Friesen JD, von Meyenburg K (1977) Interaction of alleles of the relA, relC and spoT genes in Escherichia coli: Analysis of the interconversion of GTP, ppGpp and pppGpp. Molec Gen Genet 150:87–101

    Article  PubMed  CAS  Google Scholar 

  • Gallant JA (1979) Stringent control in E. coli. Ann Rev Genet 13:393–414

    Article  PubMed  CAS  Google Scholar 

  • Harshman RB, Yamazaki H (1972) MS I accumulation induced by sodium chloride. Biochemistry 11:615–618

    Article  PubMed  CAS  Google Scholar 

  • Hansen MT, Pato ML, Molin S, Fiil NP, von Meyenburg K (1975) Simple downshift and resulting lack of correlation between ppGpp pool size and ribonucleic acid accumulation. J Bacteriol 122:585–591

    PubMed  CAS  Google Scholar 

  • Hölttä E, Jänne J, Pispa J (1974) The regulation of polyamine synthesis during the stringent control in Escherichia coli. Biochem Biophys Res Commun 59:1104–1111

    Article  PubMed  Google Scholar 

  • Hughes J, Mellows G (1978) Inhibition of isoleucyl-transfer ribonucleic acid synthetase in Escherichia coli by pseudomonic acid. Biochem J 176:305–318

    PubMed  CAS  Google Scholar 

  • Irr J, Gallant J (1969) The control of ribonucleic acid synthesis in Escherichia coli II. Stringent control of energy metabolism. J Biol Chem 244:2233–2239

    PubMed  CAS  Google Scholar 

  • Kari C, Török I, Travers A (1977) ppGpp cycle in Escherichia coli. Molec Gen Genet 150:249–255

    Article  PubMed  CAS  Google Scholar 

  • Khan SR, Yamazaki H (1974) Inapparent correlation between guanosine tetraphosphate levels and RNA contents in Escherichia coli. Biochem Biophys Res Commun 59:125–132

    Article  PubMed  CAS  Google Scholar 

  • Kessler DP, Rickenberg JV (1963) The competitive inhibition of α-methylglucoside uptake in Escherichia coli. Biochem Biophys Res Commun 10:482–487

    Article  PubMed  CAS  Google Scholar 

  • Ogilvie A, Wiebauer K, Kersten W (1975) Inhibition of leucyltransfer ribonucleic acid synthetase in Bacillus subtilis by granaticin. Biochem J 152:511–515

    PubMed  CAS  Google Scholar 

  • Rowe J, Goldberg ID, Amelunxen RE (1975) Development of defined and minimal media for the growth of Bacillus stearothermophilus. J Bacteriol 124:279–284

    PubMed  CAS  Google Scholar 

  • Silverman HR, Atherly AG (1979) The search for guanosine tetraphosphate (ppGpp) and other unusual nucleotides in eucaryotes. Microbiol Reviews 43:27–41

    CAS  Google Scholar 

  • Sokawa Y, Nakao E, Kaziro Y (1968) On the nature of the control by RC gene in E. coli: Amino acid dependent control of lipid synthesis. Biochem Biophys Res Commun 33:108–112

    Article  PubMed  CAS  Google Scholar 

  • Weyer WJ, de Boer HA, de Boer JG, Gruber M (1976) The sequence of ppGpp and pppGpp in the reaction scheme for magic spot synthesis. Biochim Biophys Acta 442:123–127

    PubMed  CAS  Google Scholar 

  • Yang H-L, Zubay G, Urm E, Reiness G, Cashel M (1974) Effects of guanosine tetraphosphate, guanosine pentaphosphate, and β-ψ methylenyl-guanosine pentaphosphate on gene expression of Escherichia coli in vitro. Proc Natl Acad Sci USA 71:63–67

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fehr, S., Richter, D. The stringent response to unacylated tRNA, energy- and temperature-downshift in Bacillus stearothermophilus . Arch. Microbiol. 129, 29–31 (1981). https://doi.org/10.1007/BF00417174

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417174

Key words

Navigation