Skip to main content
Log in

Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Five strains of acetogenic bacteria were isolated by selective enrichment from the rumen of a mature Hereford crossbred steer fed a typical high forage diet. Suspensions of rumen bacteria, prepared from contents collected 7 h postfeeding, blended and strained through cheesecloth, were incubated in a minimal medium containing 10% clarified rumen fluid under either H2:CO2 (80:20) or N2:CO2 (80:20) headspace atmosphere. The selection criterion was an increment of acetate in the enrichments incubated under H2:CO2. Periodically, the enrichment broths were plated onto agar media and presumed acetogenic bacteria subsequently were screened for acetate production. Selected acetogenic bacteria utilized a pressurized atmosphere of H2:CO2 to form acetate in quantities 2 to 8-fold higher than when grown under N2:CO2. All presumptive acetogenic isolates were derived from either the 10-7 or 10-8 dilutions of rumen contents. All 5 strains were Gram-positive rods, and all utilized formate, glucose and CO. One strain required, and all were stimulated by, rumen fluid. No spores were observed with phase-contast microscopy and two strains were motile. No methane was detected in the headspace of pure cultures grown under either gas phase. The isolation of these bacteria indicates that acetogenic bacteria are inhabitants of the rumen of the bovine fed a typical diet and suggests that they may be participants in the utilization of hydrogen in the rumen ecosystem. Strain 139B (= ATCC 43876) is named Acetitomaculum ruminis gen. nov., sp. nov. and is the type strain of this new species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Balch WE, Wolfe RS (1976) A new approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791

    PubMed  CAS  Google Scholar 

  • Balch WE, Wolfe RS (1979) Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid). J Bacteriol 137:256–263

    PubMed  CAS  Google Scholar 

  • Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361

    CAS  Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Bouwer EJ, McCarty PL (1983) Effects of 2-bromoethanesulfonic acid and 2-chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column. Appl Environ Microbiol 45:1408–1410

    PubMed  CAS  Google Scholar 

  • Boyde A, Vesely P (1972) Comparison of fixation and drying procedure for preparation of some cultured cell lines for examination in the SEM. In: Johari O, Corvin I (eds) Proceedings of the Fifth Annual Scanning Electron Microscope Symposium. IIT Research Institute, Chicago, IL, pp 265–272

    Google Scholar 

  • Braun M, Gottschalk G (1982) Acetobacterium wieringae sp. nov., a new species producing acetic acid from molecular hydrogen and carbon dioxide. Zentralbl Bakteriol Parasitenkd Infektioskr Hyg Abt 1 Orig. Reihe C 3:368–376

    Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Schoberth S, Gottschalk G (1979) Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch Microbiol 120:201–204

    Article  PubMed  CAS  Google Scholar 

  • Breznak JA, Switzer JM (1986) Acetate synthesis from H2 plus CO2 by termite gut microbes. Appl Environ Microbiol 52:623–630

    PubMed  CAS  Google Scholar 

  • Bryant MP, Small N, Bouma C, Robinson I (1958) Studies on the composition of the ruminal flora and fauna of young calves. J Dairy Sci 41:1747–1767

    Article  Google Scholar 

  • Canby CA, Dogan U, Tomanck RJ (1985) Hexamethyldisilazane (HMDS) for mammalian tissue: an alternative method to critical point drying (CPD). J Electron Microsc Tech 2:653

    Google Scholar 

  • Cottyn BG, Boucque CV (1968) Rapid method for the gas-chromatographic determination of volatile fatty acids in rumen fluid. J Agric Fd Chem 16:105–107

    Article  CAS  Google Scholar 

  • Genthner BRS, Davis CL, Bryant MP (1981) Features of rumen and sewage strains of Eubacterium limosum, a methanol- and H2:CO2-utilizing species. Appl Environ Microbiol 42:12–19

    PubMed  CAS  Google Scholar 

  • Gunsalus RP, Romesser JA, Wolfe RS (1978) Preparation of coenzyme M analogs and their activity in the methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377

    Article  PubMed  CAS  Google Scholar 

  • Heinrikson RL, Meredith SC (1984) Amino acid analysis by reversephase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem 136:65–74

    Article  PubMed  CAS  Google Scholar 

  • Hermann M, Popoff MR, Sebald M (1987) Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide. Int J Syst Bacteriol 37:93–101

    CAS  Google Scholar 

  • Holdeman LV, Cato EP, Moore WEC (1977) Anaerobic laboratory manual, 4th ed. Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris R, Ribbons DW (eds) Methods in microbiology, vol 3 B. Academic Press, New York, pp 117–132

    Google Scholar 

  • Hungate RE (1976) The rumen fermentation. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Microbial production and utilization of gases. Goltze, Göttingen, pp 119–124

    Google Scholar 

  • Huss V, Schleifer KH, Lindal E, Schwan O, Smyth CJ (1982) Peptidoglycan type, base composition of DNA, and DNA-DNA homology of Peptostreptococcus indolicus and Peptostreptococcus asaccharolyticus. FEMS Microbiol Lett 15:285–289

    Article  CAS  Google Scholar 

  • Johnson JL (1981) Genetic characterization. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds) Manual of methods for general bacteriology, 1st ed. American Society for Microbiology, Washington DC, pp 450–472

    Google Scholar 

  • Johnson JL, Francis BS (1975) Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species. J Gen Microbiol 88:229–244

    PubMed  CAS  Google Scholar 

  • Kandler O, Schoberth S (1979) Murein structure of Acetobacterium woodii. Arch Microbiol 120:181–183

    Article  CAS  Google Scholar 

  • Leedle JAZ, Butine TJ (1987) Enumeration of cellulolytic anaerobic bacteria from the bovine rumen: comparison of three methods. Curr Microbiol 15:77–79

    Article  Google Scholar 

  • Leedle JAZ, Greening RC (1988) Methanogenic and acidogenic bacteria in the bovine rumen: postprandial changes after feeding high- or low-forage diets once daily. Appl Environ Microbiol 54:502–506

    PubMed  CAS  Google Scholar 

  • Leedle JAZ, Hespell RB (1980) Differential carbohydrate media and anaerobic replica techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl Environ Microbiol 39:709–719

    PubMed  CAS  Google Scholar 

  • Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing acetogenic bacterium. Arch Microbiol 129:275–280

    Article  CAS  Google Scholar 

  • Mayhew JW, Gorbach SL (1977) Internal standards for the gas chromatographic analysis of metabolic end products from anaerobic bacteria. Appl Environ Microbiol 33:1002–1003

    PubMed  CAS  Google Scholar 

  • Möller B, Oßmer R, Howard BH, Gottschalk G, Hippe H (1984) Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov. Arch Microbiol 139:388–396

    Article  Google Scholar 

  • Moore WEC, Holdeman LV (1986) Genus Eubacterium. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey's manual systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, pp 1353–1373

    Google Scholar 

  • Ohwaki D, Hungate RE (1977) Hydrogen utilization by clostridia in sewage sludge. Appl Environ Microbiol 33:1270–1274

    PubMed  CAS  Google Scholar 

  • Prins RA, Lankhorst A (1977) Synthesis of acetate from CO2 in the cecum of some rodents. FEMS Microbiol Lett 1:255–258

    Article  CAS  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-dense stain in electron microscopy. J Cell Biol 17:208–213

    Article  PubMed  CAS  Google Scholar 

  • Robinson JA, Strayer RF, Tiedje JM (1981) Method for measuring dissolved hydrogen in anaerobic ecosystems: application of the rumen. Appl Environ Microbiol 41:545–548

    PubMed  CAS  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477

    PubMed  CAS  Google Scholar 

  • Schleifer KH, Nimmermann E (1973) Peptidoglycan types of the strains of the genus Peptococcus. Arch Mikrobiol 93:245–258

    Article  PubMed  CAS  Google Scholar 

  • Sleat R, Mah RA, Robinson R (1985) Acetoanaerobium noterae gen. nov., sp. nov.: an anaerobic bacterium that forms acetate from H2 and CO2. Int J Syst Bacteriol 35:10–15

    Article  Google Scholar 

  • Smith MR, Mah RA (1981) 2-Bromoethanesulfonate: a selective agent for isolating resistant Methanosarcina mutants. Curr Microbiol 6:321–326

    Article  CAS  Google Scholar 

  • Supelco, Inc. (1975) Separation of VFA C2−C5, Bulletin 749D. Bellefonte, PA

  • Tanner RS, Stackebrandt E, Fox GE, Woese CR (1981) A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue. Curr Microbiol 5:35–38

    Article  Google Scholar 

  • Teather RM (1982) Maintenance of laboratory strains of obligately anaerobic rumen bacteria. Appl Environ Microbiol 44:499–501

    PubMed  CAS  Google Scholar 

  • Weiss N, Schleifer KH, Kandler O (1981) The peptidoglycan types of Gram-positive anaerobic bacteria and their taxonomic implications. Rev Inst Pasteur (Lyon) 14:3–12

    CAS  Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating non-hydrogen oxidizing methane bacterium. Arch Microbiol 124:1–11

    Article  PubMed  CAS  Google Scholar 

  • Zinder SH, Anguish T, Cardell SC (1984) Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor. Appl Environ Microbiol 47:1343–1345

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Portions of this work were presented previously (Greening RC, Leedle JAZ (1987) Abstr Annu Meet Am Soc Microbiol I 131, pp 194)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greening, R.C., Leedle, J.A.Z. Enrichment and isolation of Acetitomaculum ruminis, gen. nov., sp. nov.: acetogenic bacteria from the bovine rumen. Arch. Microbiol. 151, 399–406 (1989). https://doi.org/10.1007/BF00416597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00416597

Key words

Navigation