Archives of Microbiology

, Volume 136, Issue 1, pp 54–59 | Cite as

Occurrence of polyglucose as a storage polymer in Desulfovibrio species and Desulfobulbus propionicus

  • Fons J. M. Stams
  • Marten Veenhuis
  • Gerard H. Weenk
  • Theo A. Hansen
Original Papers


The occurrence of organic storage compounds in six strains of sulfate-reducing bacteria was investigated.

In Desulfovibrio HL21 and Desulfovibrio vulgaris NCIB 8303 accumulation of polyglucose was brought about by limiting the Fe2+ or NH4+concentration in the growth medium. Desulfobulbus propionicus 1pr3 and especially Desulfovibrio gigas NCIB 9332 already synthesized large amounts of polyglucose in normal media, whereas the synthesis of polyglucose in two strains of Desulfovibrio desulfuricans was far less pronounced.

Suspensions of Desulfovibrio HL21 cells in media without an energy source and sulfate degraded the polyglucose to acetate, hydrogen and small amounts of ethanol and succinate; Desulfobulbus propionicus formed acetate, propionate and some hydrogen under these conditions. In the presence of sulfate both strains produced acetate and corresponding amounts of sulfide.

None of the strains synthesized PHB as a storage polymer.

Key words

Sulfate-reducing bacteria Polyglucose Storage compounds Desulfobulbus propionicus Desulfovibrio 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akagi JM, Jackson G (1967) Degradation of glucose by proliferating cells of Desulfotomaculum nigrificans. Appl Microbiol 15:1427–1430Google Scholar
  2. Barker SA, Bourne EJ, Whiffen DH (1956) Use of infrared analysis in the determination of carbohydrate structure. Meth Biochem Anal 3:213Google Scholar
  3. Beudeker RF, Kerver JWM, Kuenen JG, (1981) Occurrence, structure and function of intracellular polyglucose in the obligate chemolithotroph Thiobacillus neapolitanus. Arch Microbiol 129:221–226Google Scholar
  4. Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in micro-orgnisms. In: Rose AH, Tempest DW (eds) Advances in microbial physiology, vol 10. Academic Press, London New York, pp 135–266Google Scholar
  5. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbon DW (eds) Methods in microbiology, vol 5B. Academic Press, London, pp 209–344Google Scholar
  6. Howard BH, Hungate RE (1976) Desulfovibrio of the sheep rumen. Appl Environm Microbiol 32:598–602Google Scholar
  7. Kuenen JG, Veldkamp H (1973) Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. Arch Mikrobiol 94:173–190Google Scholar
  8. Laanbroek HJ, Veldkamp H (1982) Microbial interactions in sediment communities. Phil Trans R Soc Lond B 297:533–550Google Scholar
  9. Laanbroek HJ, Abee T, Voogd IL (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch Microbiol 133:178–184Google Scholar
  10. Law JH, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36Google Scholar
  11. Linton JD, Cripps RE (1978) The occurrence and identification of intracellular polyglucose storage granules in Methylococcus NCIB 11083 grown in chemostat culture on methane. Arch Microbiol 117:41–48Google Scholar
  12. Pfennig N, Lippert KD (1966) Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256Google Scholar
  13. Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfatereducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 926–940Google Scholar
  14. Postgate JR (1979) The sulphate-reducing bacteria. Cambridge University Press, CambridgeGoogle Scholar
  15. Preiss J (1978) Regulation of adenosine diphosphate glucose pyrophosphorylase. Adv Enzymol 46:317–381Google Scholar
  16. Ruocco JJ, Marchiondo AA, Barton LL, Scaletti JV (1978) Electron microscopy of Desulfovibrio gigas with the identification of inclusion bodies containing polymeric-β-hydroxybutyrate. Abstr Annu Meet Am Soc Microbiol, Las Vegas, p 79 (J17)Google Scholar
  17. Schade HAR (1973) On the staining of glycogen for electron microscopy with polyacids of tungsten and molybdenum. I. Direct staining of sections of osmium fixed and Epon embedded mouse liver with aqueous solutions of phosphotungstic acid (PTA). In: Wisse E, Daems WTh, Molenaar I, van Duyn P (eds) Electron microscopy and cytochemistry, elsevier North Holland, Amsterdam, pp 263–266Google Scholar
  18. Sirevag R, Ormerod JG (1977) Synthesis, storage and degradation of polyglucose in Chlorobium thiosulfatophilum. Arch Microbiol 111:239–244Google Scholar
  19. Smith AJ, Hoare DS (1977) Specialist phototrophs, lithotrophs and methylotrophs: a nity among a diversity of prokaryotes. Bacteriol Rev 41:419–448Google Scholar
  20. Stams AJM, Hansen TA (1982) Oxygen-labile l(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett 13:389–394Google Scholar
  21. Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180Google Scholar
  22. Trüper HG, Schlegel HG (1964) Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements of growing cells of Chromatium okenii. Antonie van Leeuwenhoek J Microbiol Serol 30:225–238Google Scholar
  23. Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzosäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral Thesis, University of GöttingenGoogle Scholar
  24. Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365Google Scholar
  25. Zevenhuizen LPTM (1966) Function, structure and metabolism of the intracellular polysaccharide of Arthrobacter. Doctoral Thesis, Agricultural University of WageningenGoogle Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Fons J. M. Stams
    • 1
  • Marten Veenhuis
    • 2
  • Gerard H. Weenk
    • 1
  • Theo A. Hansen
    • 1
  1. 1.Department of MicrobiologyUniversity of GroningenHarenThe Netherlands
  2. 2.Department of Electron MicroscopyUniversity of GroningenHarenThe Netherlands

Personalised recommendations