Journal of Materials Science

, Volume 29, Issue 16, pp 4200–4204 | Cite as

Observations of polyaniline surface morphology modification during doping and de-doping using atomic force microscopy

  • Like Xie
  • L. J. Buckley
  • J. Y. Josefowicz


Chemically synthesized 30 μm thick polyaniline films were studied during the doping and dedoping process by imaging the polymer surface using in situ atomic force microscopy (AFM). The polymer, which was initially in the base non-conducting form, was doped using aqueous solutions of both tosylic acid (pH = 0.2) and HCl (pH = 0.2 and 1.0). De-doping was accomplished by exposing the same doped polymer surface to NH4OH (pH = 12) base solution. AFM images showed that it was necessary to cycle the polymer surface three times between acid and base before a reproducible surface morphology was established. For the case of doping with tosylic acid, AFM images showed that the polyaniline surface was immediately roughened; the changes in mean roughness for the base and acid conditions were ~ 5.4 and ~ 6.7 nm, respectively. In addition there appeared to be an increase in the size of surface channels and cracks. When doping with HCl (pH = 1.0), no change in surface morphology was observed; however, noticeable surface roughening occurred over 10 min for the case of the lower pH = 0.2 solution; mean roughness changes for the base and acid conditions were ~ 17.9 and 39.2 nm. Radio frequency measurements, which determined the polymer complex permittivity, and d.c. conductivity measurements were used to determine the level of doping in the samples studied by AFM which were exposed to acid solutions.


Atomic Force Microscopy Polyaniline NH4OH Atomic Force Microscopy Image Polymer Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. MacDiarmid, J. C. Chiang, A. F. Richter and A. J. Epstein, Synth. Met. 18 (1987) 285.CrossRefGoogle Scholar
  2. 2.
    M. Mizumoto, M. Namba, S. Nishimura, H. Miyadera, M. Koseki and Y. Kobayashi, ibid. 28 (1989) C639.CrossRefGoogle Scholar
  3. 3.
    E. M. Genies, M. Lapkowski, C. Santier and E. Vieil, ibid. 18 (1987) 631.CrossRefGoogle Scholar
  4. 4.
    R. Noufi, A. J. Nozik, J. White and L. F. Warren, J. Electrochem. Soc. 129 (1982) 2261.CrossRefGoogle Scholar
  5. 5.
    E. W. Paul, A. J. Rocco, and M. S. Wrighton, J. Phys. Chem. 89 (1985) 1441.CrossRefGoogle Scholar
  6. 6.
    R. Yang, D. F. Evans, L. Christensen and W. A. Hendrickson, J. Phys. Chem. 94 (1990) 6117.CrossRefGoogle Scholar
  7. 7.
    G. Caple, B. L. Wheeler, R. Swift, T. L. Poreter and S. Jeffers, ibid. 94 (1990) 5639.CrossRefGoogle Scholar
  8. 8.
    I. G. Mantovani, R. J. Warmack, B. K. Annis, A. G. MacDiarmid and E. J. Scher, Appl. Polym. Sci. 40 (1990) 1693.CrossRefGoogle Scholar
  9. 9.
    Y. T. Kim, H. Yang and A. J. Bard, J. Electrochem. Soc. 138 (1991) L71.CrossRefGoogle Scholar
  10. 10.
    T. L. Porter, C. Y. Lee, B. L. Wheeler and G. Caple, J. Vac. Sci. Technol. A9 (1991) 1452.CrossRefGoogle Scholar
  11. 11.
    G. Binning, C. H. Gerber, T. R. Albrecht and C. F. Quate, Europhys. Lett. 3 (1987) 1281.CrossRefGoogle Scholar
  12. 12.
    T. R. Albrecht and C. F. Quate, J. Vac. Sci. Technol. A6 (1988) 271.CrossRefGoogle Scholar
  13. 13.
    T. R. Alrecht and C. F. Quate, J. Appl. Phys. 62 (1987) 2599.CrossRefGoogle Scholar
  14. 14.
    J. Y. Josefowicz, N. C. Maliszewskyj, S. H. J. Idziak, P. A. Heiney, J. P. McCauley and A. B. Smith III, Science 260 (1993) 323.CrossRefGoogle Scholar
  15. 15.
    T. R. Albrecht, M. M. Dovek, C. A. Lang, P. Grutter, C. F. Quate, S. W. J. Kuan, C. W. Frank and R. F. W. Pease, J. Appl. Phys. 64 (1988) 1178.CrossRefGoogle Scholar
  16. 16.
    W. Huang, B. Humphrey and A. MacDiarmid, J. Chem. Soc., Faraday Trans. 82 (1986) 2385.CrossRefGoogle Scholar
  17. 17.
    A. G. MacDiarmid, J. Chang and A. Richter, Synth. Met. 18 (1987) 285.CrossRefGoogle Scholar
  18. 18.
    G. Meyer and N. M. Amber, Appl. Phys. Lett. 53 (1988) 1045.CrossRefGoogle Scholar
  19. 19.
    L. J. Buckley and K. E. Dudeck, Synth. Met. 52 (1992) 353.CrossRefGoogle Scholar
  20. 20.
    J. Pouget, E. M. Jozefowicz, A. J. Epstein, X. Tang and A. G. MacDiarmid, Macromolecules 24 (1991) 779.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Like Xie
    • 1
  • L. J. Buckley
    • 2
  • J. Y. Josefowicz
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Chemistry DivisionNaval Research LaboratoryWashingtonUSA

Personalised recommendations