Journal of Materials Science

, Volume 29, Issue 16, pp 4177–4183 | Cite as

Oxidation behaviour of reaction-bonded alumina compacts using an Al88Si12 alloy precursor

  • S. H. Yokota
  • L. C. De Jonghe
  • M. N. Rahaman


The oxidation behaviour of attrition-milled Al88Si12/Al2O3 powder mixtures was investigated for the formation of mullite/Al2O3 composites by the reaction bonded alumina (RBAO) process. Cylindrical powder compacts were heated at 5°C min−1 to temperatures between 450 and 1400°C. Oxidation occurred rapidly between ca. 400 and 750°C. Dense, outer reaction layers which formed at the lower temperatures inhibited complete oxidation and led to fracture of the body during continued heating to higher temperatures (above ca. 850°C) While the incorporation of ZrO2 improved the oxidation of the samples, X-ray analysis indicated that the Si in the alloy reacted with the ZrO2 to form phases which prevented the formation of mullite at the temperatures used in the experiments.


Oxidation Polymer Alumina Powder Compact Powder Mixture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Maczura, K. J. Moody and E. M. Anderson, Ceram. Bull. 71 (1992) 780.Google Scholar
  2. 2.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, in “Introduction to ceramics”, 2nd Edn (John Wiley & Sons, New York, 1976) p. 508.Google Scholar
  3. 3.
    M. E. Washburn and W. S. Coblenz, Ceram. Bull. 67 (1988) 356.Google Scholar
  4. 4.
    N. Claussen, N. A. Travitzky and S. Wu, Ceram. Engng. Sci. Proc. 11 (1990) 806.CrossRefGoogle Scholar
  5. 5.
    M. Newkirk, A. W. Urquhart, H. R. Zwicker and E. Breval, J. Mater. Res. 1 (1986) 81.CrossRefGoogle Scholar
  6. 6.
    O. Salas, H. Ni, V. Jayaram, K. C. Klach, C. G. Levi and R. Mehrabian, J. Mater. Res. 6 (1991) 1964.CrossRefGoogle Scholar
  7. 7.
    B. R. Marple and D. J. Green, J. Amer. Ceram. Soc. 71 (1988) C471.CrossRefGoogle Scholar
  8. 8.
    M. D. Sacks, N. Bozkurt and G. W. Scheiffle, J. Amer. Ceram. Soc. 74 (1991) 2428.CrossRefGoogle Scholar
  9. 9.
    J. M. Wu and C. M. Lin, J. Mater. Sci. 26 (1991) 4631.CrossRefGoogle Scholar
  10. 10.
    S. Wu and N. Claussen, J. Amer. Ceram. Soc. 74 (1991) 2460.CrossRefGoogle Scholar
  11. 11.
    S. Wu, D. Holz and N. Claussen, J. Amer. Ceram. Soc. 76 (1993) 970.CrossRefGoogle Scholar
  12. 12.
    J. Szekely, J. W. Evans and H. Y. Sohn, in “Gas-solid reactions” (Academic Press, New York, 1976) p. 130.Google Scholar
  13. 13.
    S. Antolin, A. S. Nagelberg and D. K. Creber, J. Amer. Ceram. Soc. 75 (1992) 447.CrossRefGoogle Scholar
  14. 14.
    M. Sindel, N. A. Travitzky and N. Claussen, J. Amer. Ceram. Soc. 73 (1990) 2615.CrossRefGoogle Scholar
  15. 15.
    C. Wagner, J. Electrochem. Soc. 103 (1956) 627.CrossRefGoogle Scholar
  16. 16.
    C. Wagner, J. Electrochem. Soc. 99 (1952) 369.CrossRefGoogle Scholar
  17. 17.
    R. Molins, J. D. Bartout and Y. Bienvenu, Mater. Sci. Engng. A135 (1991) 111.CrossRefGoogle Scholar
  18. 18.
    E. Di Rupo, E. Gilbart, T. G. Carruthers and R. J. Brook, J. Mater. Sci. 14 (1979) 705.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • S. H. Yokota
    • 1
  • L. C. De Jonghe
    • 1
  • M. N. Rahaman
    • 2
  1. 1.Lawrence Berkeley Laboratory, Materials Sciences DivisionUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Ceramic EngineeringUniversity of Missouri-RollaRollaUSA

Personalised recommendations