Skip to main content
Log in

Bismuth oxide-based solid electrolytes for fuel cells

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

During the last three decades, a large number of investigations has been reported pertaining to the science and technology of solid oxide fuel cells (SOFCs) based mainly on the yttria-stabilized zirconia (YSZ) electrolyte. Because of the problems associated with the high temperature of operation (~ 1000°C) of the YSZ-based cells, there has been a substantial effort to develop alternative electrolytes with ionic conductivity comparable to that of YSZ at relatively lower temperatures. This review presents a systematic evolution in the area of the development of new electrolytes based on bismuth sesquioxide for fuel cell applications at moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. “Proceedings of the Grove Anniversary Fuel Cell Symposium”, Royal Institution, London, 18–21 September 1989 (Elsevier, Amsterdam, 1990).

  2. S. Srinivasan, F. J. Salzano and A. R. Landgrebe (eds), “Industrial Water Electrolysis”, (The Electrochemical Society, Princeton, NJ, 1978).

    Google Scholar 

  3. K. Kendal, Am. Ceram. Soc. Bull. 70 (1991) 1159.

    Google Scholar 

  4. N. Q. Minh, Chemtech. 21 (1991) 32.

    Google Scholar 

  5. Idem. ibid., Chemtech. 21 (1991) 120.

    CAS  Google Scholar 

  6. B. C. H. Steele, I. Kelly, H. Middleton and R. Rudkin, Solid State Ionics 28–30 (1988) 1547.

    Google Scholar 

  7. D. C. Fee and J. P. Ackerman, Fuel Cell Seminar, Courtesy Associates, Washington DC (1983) p. 11.

    Google Scholar 

  8. H. Binder, A. Koehling, A. Krupp, K. Richter and G. Sandstede, Electrochim. Acta 8 (1963) 781.

    CAS  Google Scholar 

  9. T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.

    CAS  Google Scholar 

  10. Y. L. Sandler, J. Electrochem. Soc. 118 (1977) 1378.

    Google Scholar 

  11. N. J. Maskalick and C. C. Sun, ibid. 118 (1977) 1386.

    Google Scholar 

  12. H. S. Isaacs, in “Advances in Ceramics”, Vol. 3, “Science and Technology of Zirconia” edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, OH, (1981) p. 406.

    Google Scholar 

  13. O. Yamamoto, Y. Takeda, R. Kanno and M. Noda, in “Advances in Ceramics”. Vol. 24 “Science and Technology of Zirconia III”, edited by S. Somiya (The American Ceramic Society, Columbus, OH, 1988) p. 829.

    Google Scholar 

  14. S. F. Palguev, V. K. Dilderman and A. D. Neuimin, J. Electrochem. Soc. 122 (1975) 745.

    CAS  Google Scholar 

  15. K. S. Goto and W. Pluschkell, in “Physics of Electrolytes”, vol. 2, edited by J. Hladik (Academic Press, London, 1972) p. 540.

    Google Scholar 

  16. T. Takahashi, ibid.), p. 989.

    Google Scholar 

  17. P. Kofstad, “Nonstoichiometry, Diffusion and Electrical conductivity in Binary Metal Oxides” (Wiley Interscience, New York, 1972).

    Google Scholar 

  18. H. L. Tuller and A. S. Nowick, J. Electrochem. Soc. 122 (1975) 255.

    CAS  Google Scholar 

  19. R. T. Dirstine, R. N. Blumenthal and T. F. Kuech, ibid. 126 (1979) 264.

    CAS  Google Scholar 

  20. T. Kudo and H. Obayashi, ibid. 122 (1975) 142.

    CAS  Google Scholar 

  21. D. Y. Wang and A. S. Nowick, J. Solid State Chem. 35 (1980) 325.

    CAS  Google Scholar 

  22. R. G. Anderson and A. S. Nowick, Solid State Ionics 5 (1981) 547.

    Google Scholar 

  23. H. Yahiro, K. Eguchi and H. Arai, ibid. 21 (1986) 37.

    CAS  Google Scholar 

  24. P. N. Ross Jr. and T. G. Benjamin, J. Power Sources 1 (1976/1977) 311.

    Google Scholar 

  25. D. S. Tannhauser, J. Electrochem. Soc. 125 (1978) 1277.

    CAS  Google Scholar 

  26. H. Yahiro, Y. Baba, E. Eguchi and H. Arai, ibid. 135 (1988) 2077.

    CAS  Google Scholar 

  27. W. Weppner and H. Schubert, in “Advances in Ceramics”, Vol. 24, “Science and Technology of Zirconia III”, edited by S. Somiya (The American Ceramic Society, Columbus, OH, (1988) p. 837.

    Google Scholar 

  28. T. SATO, M. ISHITSUKA, T. FUKUSHIMA, T. ENDO and M. SCHIMADA, Mater. Sci. Forum 34–36 (188) 189.

  29. B. Y. Liaw and W. W. Weppner, J. Electrochem. Soc. 138 (1991) 2478.

    CAS  Google Scholar 

  30. J. Drennan and S. P. S. Badwal, in “Advances in Ceramics”, Vol. 24B, “Science and Technology of Zirconia III”, edited by S. Somiya, N. Yamamoto and H. Hanagida (The American Ceramic Society, Columbus, OH, 1988) p. 807.

    Google Scholar 

  31. B. C. H. Steele, in “High Conductivity Solid Ionic Conductors: Recent Trends and Applications”, edited by T. Takahashi (World Scientific, Singapore, 1989) p. 402.

    Google Scholar 

  32. K. Tsukuma and M. Schimada, J. Mater. Sci. 20 (1985) 1178.

    CAS  Google Scholar 

  33. N. Khan and B. C. H. Steele, Mater. Sci. Eng. B8 (1991) 265.

    CAS  Google Scholar 

  34. A. P. Sellar and B. C. H. Steele, Mater. Sci. Forum 34–36 (1988) 255.

    Google Scholar 

  35. R. L. Cook, R. C. MacDuff and A. F. Sammells, J. Electrochem. Soc. 137 (1990) 3309.

    CAS  Google Scholar 

  36. R. L. Cook and A. F. Sammells, Solid State Ionics 45 (1991) 311.

    CAS  Google Scholar 

  37. A. F. Sammells, R. L. Cook, J. H. White, J. J. Osborne and R. C. Macduff, ibid. 52 (1992) 111.

    CAS  Google Scholar 

  38. R. L. Cook, J. J. Osborne, J. H. White, R. C. MacDuff and A. F. Sammells, J. Electrochem. Soc. 139 (1992) L19.

    CAS  Google Scholar 

  39. J. B. Goodenough, A. Manthiram, M. Paranthaman and Y. S. Zhen, Mater. Sci. Eng. B12 (1992) 357.

    CAS  Google Scholar 

  40. B. C. H. Steele, ibid. B12 (1992) 79.

    Google Scholar 

  41. I. Kontoulis and B. C. H. Steele, J. Eur. Ceram. Soc. 9 (1992) 459.

    CAS  Google Scholar 

  42. M. Schwartz, B. F. Link and A. F. Sammells, J. Electrochem. Soc., 140 (1993) L62.

    CAS  Google Scholar 

  43. H. Iwahara, T. Esaka, H. Uchida and N. Maeda, Solid State Ionics 3–4 (1981) 359.

    Google Scholar 

  44. H. Iwahara, H. Uchida, K. Kondo and K. Ogaki, J. Electrochem. Soc. 135 (1989) 529.

    Google Scholar 

  45. H. Iwahara, H. Uchida, K. Ogaki and H. Nagato, ibid. 138 (1991) 295.

    CAS  Google Scholar 

  46. B. HEED and A. LUNDEN, Technical Report to the Swedish Board of Technical Development, Sweden (1972).

  47. A. Lunden, B.-E. Mellander and B. Zhu, Acta Chem. Scand. 45 (1991) 981.

    CAS  Google Scholar 

  48. L. G. Sillen, Ark. Kemi Mineral Geol. 12A (1937) 1.

    CAS  Google Scholar 

  49. W. C. Schumb and E. S. Ritter, J. Am. Chem. Soc. 65 (1943) 1055.

    CAS  Google Scholar 

  50. G. Gattow and Z. Schuetze, Anorg. Allg. Chem. 318 (1962) 176.

    CAS  Google Scholar 

  51. Idem, ibid. and Z. Schuetze, Anorg. Allg. Chem. 328 (1964) 44.

    CAS  Google Scholar 

  52. C. N. R. Rao, G. V. Subbarao and S. Ramdas, J. Phys. Chem. 73 (1969) 672.

    CAS  Google Scholar 

  53. H. A. Harwig, Z. Anorg. Allg. Chem. 444 (1978) 151.

    CAS  Google Scholar 

  54. H. A. Harwig and J. W. Weenk, ibid. 444 (1978) 111.

    Google Scholar 

  55. T. Takahashi (ed.), “High Conductivity Solid Ionic Conductors: Recent Trends and Applications”, (World Scientific, Singapore, 1989) p. 1.

    Google Scholar 

  56. P. O. Battle, C. R. A. Catlow, J. W. Heap and L. M. Moroney, J. Solid State Chem. 63 (1986) 8.

    CAS  Google Scholar 

  57. A. V. Virkar, J. Nachlas, A. V. Joshi and J. Diamond, J. Am. Ceram. Soc. 73 (1990) 3382.

    CAS  Google Scholar 

  58. K. Z. Fung and A. V. Virkar, ibid. 74 (1991) 1970.

    CAS  Google Scholar 

  59. A. V. Virkar, J. Electrochem. Soc. 138 (1991) 1481.

    CAS  Google Scholar 

  60. T. Takahashi, T. Esaka and H. Iwahara. J. Appl. Electrochem. 7 (1977) 299.

    CAS  Google Scholar 

  61. E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. 68A (1964) 199.

    Google Scholar 

  62. T. Takahashi, H. Iwahara and T. Nagai, J. Appl. Electrochem. 2 (1972) 97.

    CAS  Google Scholar 

  63. P. Conflant, J. C. Boivin and D. Thomas, J. Solid State Chem. 18 (1976) 133.

    CAS  Google Scholar 

  64. L. G. Sillen and B. Sillen, Z. Phys. Chem. 49B (1944) 27.

    Google Scholar 

  65. L. G. Sillen and B. Aurivillius, Z. Krystallogr. 101 (1939) 483.

    CAS  Google Scholar 

  66. P. Conflant, J. C. Boivin and D. Thomas, J. Solid State Chem. 35 (1980) 192.

    CAS  Google Scholar 

  67. A. D. Neuimin, L. D. Yushina, Yu. M. Ovchinnikov and S. F. Palguev, in “Transactions of the Institute of Electrochemistry 4”, Urals Academy of Sciences, Electrochemistry of Molten and Solid Electrolytes, Vol. 2 (translated from Russian), edited by M. V. Smirnov (Consultant Bureau, New York, 1964) p. 92.

    Google Scholar 

  68. K. Hauffe and H. Peters, Z. Phys. Chem. 201 (1952) 121.

    CAS  Google Scholar 

  69. T. Takahashi, T. Esaka and H. Iwahara, J. Solid State Chem. 16 (1976) 317.

    CAS  Google Scholar 

  70. T. Suzuki, Y. Dansui, T. Shirai and C. Tsubaki, J. Mater. Sci. 20 (1985) 3125.

    CAS  Google Scholar 

  71. H. D. Baek and A. V. Virkar, J. Electrochem. Soc. 138 (1992) 3174.

    Google Scholar 

  72. K. Z. Fung, H. D. Baek and A. V. Virkar, Solid State Ionics 52 (1992) 199.

    CAS  Google Scholar 

  73. M. J. Verkerk and A. J. Burggraaf, J. Appl. Electrochem. 10 (1980) 677.

    CAS  Google Scholar 

  74. T. Takahashi, H. Iwahara and T. Arao, ibid. 5 (1975) 187.

    CAS  Google Scholar 

  75. T. Takahashi, T. Esaka and H. Iwahara, ibid. 7 (1977) 299.

    CAS  Google Scholar 

  76. J. H. W. de Wit, T. Honders and G. H. J. Broers, in “Fast Ion Transport in Solids”, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North Holland, Amsterdam, 1979) p. 657.

    Google Scholar 

  77. W. N. Lawless and S. L. Swartz, Phys. Rev. B 28 (1983) 2125.

    CAS  Google Scholar 

  78. C. Wang, X. Xu and B. Li, Solid State Ionics 13 (1983) 135.

    Google Scholar 

  79. A. V. Joshi, S. Kulkarni, J. Nachlas, J. Diamond and N. Weber, J. Mater. Sci. 25[2B] (1990) 1237.

    Google Scholar 

  80. A. Watanabe and T. Kikuchi, Solid State Ionics 21 (1986) 287.

    CAS  Google Scholar 

  81. K. Kruidhof, K.J. De Vries and A. J. Burggraaf, ibid. 37 (1990) 213.

    CAS  Google Scholar 

  82. P. J. Dodor, J. Tanaka and A. Watanabe, ibid. 25 (1987) 177.

    Google Scholar 

  83. E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. 68A (1964) 200.

    Google Scholar 

  84. R. K. Datta and J. P. Meehan, Z. Anorg. Allg. Chem. 383 (1971) 328.

    CAS  Google Scholar 

  85. T. Takahashi and H. Iwahara, Mater. Res. Bull. 13 (1978) 1447.

    CAS  Google Scholar 

  86. A. Watanbe, Solid State Ionics 40–41 (1990) 882.

    Google Scholar 

  87. E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand. 68A (1964) 197.

    Google Scholar 

  88. V. J. POWERS, PhD thesis, Ohio State University (1989).

  89. T. Takahashi, H. Iwahara and Y. Nagai, J. Appl. Electrochem. 2 (1972) 97.

    CAS  Google Scholar 

  90. T. Takahashi and H. Iwahara, ibid. 3 (1973) 65.

    Google Scholar 

  91. M. J. Verkerk and A. J. Burggraaf, Solid State Ionics 3–4 (1981) 463.

    Google Scholar 

  92. P. Duran, J. R. Jurado, C. Moure, N. Valverde and B. C. H. Steele, Mater. Chem. Phys. 18 (1987) 287.

    CAS  Google Scholar 

  93. J. R. Jurado, C. Moure, P. Duran and N. Valverde, Solid State Ionics 28–30 (1988) 518.

    Google Scholar 

  94. D. Mercurio, M. El Farissi, B. Frit, J. M. Reau and J. Senegas, ibid. 39 (1990) 297.

    CAS  Google Scholar 

  95. A. WAtanabe, ibid. 35 (1989) 281.

    CAS  Google Scholar 

  96. T. Takahashi, T. Esaka and H. Iwahara, J. Appl. Electrochem. 5 (1975) 197.

    CAS  Google Scholar 

  97. P. Su and A. V. Virkar, J. Electrochem. Soc. 139 (1992) 1671.

    CAS  Google Scholar 

  98. M. J. Verkerk and A. J. Burggraaf, ibid. 128 (1981) 75.

    CAS  Google Scholar 

  99. S. N. Nasanova, V. Serebennikov and G. A. Narnov, Russ. J. Inorg. Chem. 18 (1973) 1244.

    Google Scholar 

  100. M. J. Verkerk, K. Keizer and A. J. Burggraaf, J. Appl Electrochem. 10 (1980) 81.

    CAS  Google Scholar 

  101. M. J. Verkerk, M. W. J. Hammink and A. J. Burggraaf, J. Electrochem. Soc. 130 (1983) 70.

    CAS  Google Scholar 

  102. K. Keizer, M. J. Verkerk and A. J. Burggraaf, Ceramurg. Int., 5 (1979) 143.

    CAS  Google Scholar 

  103. H. Kruidhof, K. Seshan, G. M. H. van de Velde, K. J. de Vries and A. J. Burggraaff, Mater. Res. Bull. 23 (1988) 371.

    CAS  Google Scholar 

  104. M. Dumelie, G. Nowogrocki and J. C. Boivin, Solid State Ionics 28–30 (1988) 524.

    Google Scholar 

  105. I. C. Vinke, J. L. Bakiewicz, B. A. Boukamp, K. J. de Vries and A. J. Burggraaf, ibid. 40–41 (1990) 886.

    Google Scholar 

  106. I. C. Vinke, S. Seshan, B. A. Boukamp, K. J. de Vries and A. J. Burggraaf, ibid. 34 (1989) 235.

    CAS  Google Scholar 

  107. R. D. Shannon, Acta Crystallogr. A32 (1976) 751.

    CAS  Google Scholar 

  108. H. T. Cahen, T. G. M. van der Belt, J. W. H. de Wit and G. H. J. Broers, Solid State Ionics 1 (1980) 411.

    CAS  Google Scholar 

  109. A. Watanabe, ibid. 34 (1989) 35.

    CAS  Google Scholar 

  110. G. Meng, C. Chen, X. Han, P. Yang and D. Peng, ibid. 28–30 (1988) 533.

    Google Scholar 

  111. A. V. Virkar and M. R. Plichta, J. Am. Ceram. Soc. 66 (1983) 451.

    CAS  Google Scholar 

  112. T. C. Yuan and A. V. Virkar, ibid. 69 (1986) C 310.

    Google Scholar 

  113. Idem, ibid. and A. V. Virkar, ibid. 71 (1988) 12.

    CAS  Google Scholar 

  114. D. Drobeck, A. V. Virkar and R. M. Cohen, J. Phys. Chem. Solids 51 (1990) 977.

    CAS  Google Scholar 

  115. S. J. Kim, Z. C. Chen and A. V. Virkar, J. Am. Ceram. Soc. 71 (1988) C 428.

    CAS  Google Scholar 

  116. G. Meng, M. Zhou and D. Peng, J. Chin. Silicate Soc. 13 (1985) 366.

    Google Scholar 

  117. G. Meng, C. Yu and D. Peng, J. China Univ. Sci. Tech. Suppl. 15 (1985) 225.

    Google Scholar 

  118. K. Hu, C. Chen, D. Peng and G. Meng, Solid State Ionics 28–30 (1988) 566.

    Google Scholar 

  119. E. M. Levin and T. L. Waring, J. Res. Nat. Bur. Stand. 66A (1962) 451.

    Google Scholar 

  120. E. M. Levin and R. S. Roth, ibid. 68A (1964) 202.

    Google Scholar 

  121. F. Abraham, M. F. Dubreuille-Gresse, G. Mairesse and G. Nowogrocki, Solid State Ionics 28–30 (1988) 529.

    Google Scholar 

  122. T. Takahashi, H. Iwahara and T. Esaka, J. Electrochem. Soc. 124 (1977) 1563.

    CAS  Google Scholar 

  123. S. N. Hoda and L. L. Y. Chang, J. Am. Ceram. Soc. 57 (1974) 323.

    CAS  Google Scholar 

  124. E. L. Gal'Perin, L. Ya. Erman, I. K. Kolchin, M. A. Belova and K. S. Chernyshev, Russ. J. Inorg. Chem. 11 (1966) 1137.

    Google Scholar 

  125. A. Watanabe, N. Ishizawa and M. Kato, J. Solid State Chem. 60 (1985) 252.

    CAS  Google Scholar 

  126. T. Takahashi and H. Iwahara, J. Appl Electrochem. 3 (1973) 65.

    Google Scholar 

  127. T. Takahashi, T. Esaka and H. Iwahara, ibid. 7 (1977) 31.

    CAS  Google Scholar 

  128. B. Frit, M. Jaymes, G. Perez and P. Hagenmuller, Rev. Chim. Min. 8 (1971) 453.

    CAS  Google Scholar 

  129. B. Frit and M. Jaymes, ibid. 9 (1972) 873.

    Google Scholar 

  130. L. A. Demina and V. A. Dolgikh, Russ. J. Inorg. Chem. 29 (1984) 547.

    Google Scholar 

  131. T. Kikuch, Y. Kitami, M. Yokoyama and H. Sakai, J. Mater. Sci. 24 (1989) 4275.

    Google Scholar 

  132. I. Bloom, M. C. Hash, J. P. Zebrowski, K. M. Myles and K. Krumplet, Solid State Ionics 53–56 (1992) 739.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azad, A.M., Larose, S. & Akbar, S.A. Bismuth oxide-based solid electrolytes for fuel cells. JOURNAL OF MATERIALS SCIENCE 29, 4135–4151 (1994). https://doi.org/10.1007/BF00414192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414192

Keywords

Navigation