Skip to main content

Chloramphenicol inhibition of Pythium ultimum and Rhodotorula glutinis

Summary

The growth of Rhodotorula glutinis is inhibited by both D-threo chloramphenicol and an L-threo isomer of chloramphenicol (lacking the dichloroacetyl group), causing an increase in the mean generation time, in a variety of media, approximately proportional to the concentration of antibiotic. The antibiotic is not removed from the growth medium in any quantity during this inhibition of growth. The oxygen uptakes of normal and chloramphenicol-grown cells of R. glutinis are similar when expressed on a dry weight basis. The oxygen uptake of normal and L-threo isomer-grown cells is strongly inhibited by antimycin A, whereas D-threo chloramphenicol-grown cells are unaffected. There was no evidence to suggest that any uncoupling of phosphorylation occurred with either isomer. Pythium ultimum mycelium also showed similar oxygen uptakes per unit dry weight whether grown in the presence or absence of D-threo chloramphenicol. The D-threo chloramphenicol-grown mycelium was also insensitive to antimycin A in contrast to the normal mycelium which was strongly inhibited. P. ultimum grows slowly in the presence of 100 μg/ml D-threo chloramphenicol in a glucose salts medium, but is completely inhibited by a similar concentration in a glycerol salts medium. The L-threo isomer does not inhibit the growth of P. ultimum.

The mitochondria of Rhodotorula glutinis show a progressive disorganization when grown in the presence of increasing concentrations of D-threo chloramphenicol up to 1000 μg/ml. There is an associated over synthesis of cell wall material in the higher concentrations of the antibiotic. The L-threo isomer produces no obvious fine structural abnormalities even at concentrations of 1000 μg/ml.

This is a preview of subscription content, access via your institution.

References

  1. Bruggen, E. F. J. van, P. Borst, G. J. C. M. Ruttenberg, M. Gruber, and A. M. Kroon: Circular mitochondrial DNA. Biochim. biophys. Acta (Amst.) 119, 437–439 (1966).

    Google Scholar 

  2. Clark-Walker, G. D., and A. W. Linnane: The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory deficient mutant yeast and chloramphenicol-inhibited wild type cells. J. Cell Biol. 34, 1–14 (1967).

    Google Scholar 

  3. Eisenstadt, J. M., and G. Brawerman: The protein-synthesizing systems from the cytoplasm and the chloroplasts of Euglena gracilis. J. molec. Biol. 10, 392–402 (1964).

    Google Scholar 

  4. Ellis, R. J.: Chloramphenicol and uptake of salt in plants. Nature (Lond.) 200, 596–597 (1963).

    Google Scholar 

  5. Evans, D. A., and D. Lloyd: The effect of chloramphenicol on the mitochondria of Polytomella caeca. Biochem. J. 103, 22 p. (1967).

  6. Freeman, K. B., and D. Haldar: The inhibition of NADH oxidation in mammalian mitochondria by chloramphenicol. Biochim. biophys. Res. Commun. 28, 8–12 (1967).

    Google Scholar 

  7. Hahn, F. E., C. L. Wisseman, and H. E. Hopps: Mode of action of chloramphenicol II. Inhibition of bacterial D-poly-peptide formation by an L-stereo-isomer of chloramphenicol. J. Bact. 67, 674–679 (1954).

    Google Scholar 

  8. Hanson, J. B., C. D. Stoner, and T. K. Hodges: Chloramphenicol as an inhibitor of energy-linked processes in maize mitochondria. Nature (Lond.) 203, 258–261 (1964).

    Google Scholar 

  9. Hendrix, J. W., and D. K. Lauder: Effects of polyene antibiotics on growth and sterol-induction of oospore formation by Pythium periplocum. J. gen. Microbiol. 44, 115–120 (1966).

    Google Scholar 

  10. Huang, M., D. R. Biggs, G. D. Clark-Walker, and A. W. Linnane: Chloramphenicol inhibition of the formation of particulate mitochondrial enzymes of Saccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 114, 434–436 (1966).

    Google Scholar 

  11. Johansen, D. A.: Plant Microtechnique. New York: McGraw Hill 1940.

    Google Scholar 

  12. Kroon, A. M.: Protein synthesis in heart mitochondria. I. Amino acid incorporation into the protein of isolated beef heart mitochondria and fractions derived from them by sonic oscillation. Biochim. biophys Acta (Amst.) 72, 391–402 (1963).

    Google Scholar 

  13. Mager, J.: Chloramphenicol and chlortetracycline inhibition of amino acid incorporation into proteins in a cell-free system from Tetrahymena pyriformis. Biochim. biophys. Acta (Amst.) 38, 150–152 (1960).

    Google Scholar 

  14. Marchant, R., and D. G. Smith: The effect of chloramphenicol on growth and mitochondrial structure of Pythium ultimum. J. gen. Microbiol. (in press) (1968).

  15. Mollenhauer, H. H.: Plastic embedding mixtures for use in electron microscopy. Stain Technol. 39, 111–114 (1964).

    Google Scholar 

  16. O'Brien, T. W., and G. F. Kalf: Ribosomes from rat liver mitochondria. I. Isolation procedure and contamination studies. J. biol. Chem. 242, 2172–2179 (1967a).

    Google Scholar 

  17. ——: Ribosomes from rat liver mitochondria. II. Partial characterization. J. biol. Chem. 242, 2180–2185 (1967b).

    Google Scholar 

  18. Parsons, D. F., and Y. Yano: The cholesterol content of the outer and inner membranes of guinea-pig liver mitochondria. Biochim. biophys. Acta (Amst.) 135, 362–364 (1967).

    Google Scholar 

  19. Potter, V. R., and A. E. Reif: Inhibition of an electron transport component by Antimycin A. J. biol. Chem. 194, 287–297 (1952).

    Google Scholar 

  20. Prusso, D. C., and K. Wells: Sporobolomyces roseus. I. Ultrastructure. Mycologia (N. Y.) 59, 337–348 (1967).

    Google Scholar 

  21. Sagan, L.: On the origin of mitosing cells. J. theoret. Biol. 14, 225–274 (1967).

    Google Scholar 

  22. Sinclair, J. H., and B. J. Stevens: Circular DNA filaments from mouse mitochondria. Proc. nat. Acad. Sci. (Wash.) 56, 508–514 (1967).

    Google Scholar 

  23. ——, and B. J. Stevens P. Sanghari, and M. Rabinowitz: Mitochondrial-satellite and circular DNA filaments in yeast. Science 156, 1234–1237 (1967).

    Google Scholar 

  24. Vazquez, D.: Uptake and binding of chloramphenicol by sensitive and resistant organisms. Nature (Lond.) 203, 257–258 (1964).

    Google Scholar 

  25. Vazquez, D.: The mode of action of chloramphenicol and related antibiotics. In Biochemical Studies of Antimicrobial Drugs. 16th Symp. Soc. Gen. Microbiol. p. 169–191 (1966).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, D.G., Marchant, R. Chloramphenicol inhibition of Pythium ultimum and Rhodotorula glutinis . Archiv. Mikrobiol. 60, 262–274 (1968). https://doi.org/10.1007/BF00413493

Download citation

Keywords

  • Chloramphenicol
  • Oxygen Uptake
  • Structural Abnormality
  • Similar Concentration
  • Salt Medium