Skip to main content
Log in

Carbohydrate synthesis from acetyl CoA in the autotroph Methanobacterium thermoautotrophicum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanobacterium thermoautotrophicum assimilates CO2 via a novel pathway which involves the synthesis of acetyl CoA from 2 CO2. The pathway of carbohydrate synthesis in this autotroph starting from acetyl CoA and CO2 was studied using, (I) 14CO2 pulse-labeling, (II) [14C]pyruvate long term labelling, and (III) enzyme studies.

  1. (I)

    The distribution of radioactivity incorporated from 14CO2 by an exponentially growing culture during 2 s–120 s incubation periods has been analysed with respect to 3-phosphoglyceric acid and sugar phosphates. Radioactivity first appeared in 3-phosphoglyceric acid and only later in sugar phosphates. Fructose and glucose phosphates were among the earliest labeled carbohydrates followed by pentose phosphates and other sugar phosphates.

  2. (II)

    When the organism was grown in the presence of [2-14C]pyruvate during several generations, radioactivity was incorporated into alanine and glucosamine in a ratio of 1:2. Alanine contained the label at C-2, whilst glucosamine was equally labeled at C-2 and at C-5.

  3. (III)

    The following enzymatic activities were detected in cell extracts with specific activities being sufficiently high to account for the in vivo rate of carbohydrate synthesis: pyruvate synthase, phosphoenolpyruvate synthetase, phosphoenolpyruvate carboxylase, enolase, phosphoglycerate mutase, phosphoglycerate kinase, glyceraldehydephosphate dehydrogenase.

The data indicate that glucogenesis from acetyl CoA and CO2 in Methanobacterium involves the pathway depicted in Fig 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PEP:

Phosphoenolpyruvate

DTE:

dithioerythritol

TES:

N-tris-(hydroxymethyl)methyl-2-amino-ethanesulfonic acid

MES:

2-(N-morpholino)ethanesulfonic acid

Tricine:

N-tris-(hydroxymethyl)-methylglycine

Tris:

tris-(hydroxymethyl)aminomethane

F420 :

Coenzyme Factor 420

References

  • Andrew JG, Morris JG (1965) The biosynthesis of alanine by Clostridium kluyveri. Biochim Biophys Acta 97:176–179

    Google Scholar 

  • Bachofen R, Buchanan BB, Arnon DI (1964) Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc Natl Acad Sci USA 51:690–694

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens. Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Bernstein IA, Wood HG (1957) Determination of isotopic carbon patterns in carbohydrate by bacterial fermentation. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, Vol 4. Academic Press, New York, p 580

    Google Scholar 

  • Bergmeyer HU (ed) (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotrophicum. Zbl Bakt Hyg, I. Abt Orig C 2:311–317

    Google Scholar 

  • Bryant MP, Tzeng SF, Robinson IM, Joyner AE (1971) Nutrient requirements of methanogenic bacteria. In: Pohland FG (ed) Anaerobic biological treatment processes. Adv Chem Ser 105. Ath Chem Soc, Washington DC, pp 23–40

    Google Scholar 

  • Buchanan BB (1979) Ferredoxin-linked carbon dioxide fixation in photosynthetic bacteria. In: Gibbs M, Latzko E (eds) Photosynthesis II. Photosynthetic carbon metabolism and related processes. (Encyclopedia of plant physiology: new series. Vol 6). Springer Verlag. Berlin Heidelberg New York, pp 416–424

    Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. WA Benjamin Inc, New York

    Google Scholar 

  • Cooper RA, Kornberg HL (1974) Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase. In: Boyer PD (ed) The Enzymes, 3rd ed, vol 10. Academic Press, New York, pp 631–649

    Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: Analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    Google Scholar 

  • Decker K, Jungermann K, Thauer RK (1970) Energy production in anaerobic organisms. Angewandte Chemie Int Ed 9:138–158

    Google Scholar 

  • Eyzaguirre J, Jansen K, Fuchs G (1982) Phosphoenolpyruvate synthetase in Methanobacterium thermoautotrophicum. Arch Microbiol 132:67–74

    Google Scholar 

  • Frings W, Schlegl HG (1971) Synthese von Phosphoenolpyruvat aus Pyruvat durch Extrakte aus Hydrogenomonas eutropha. Arch Microbiol 79:220–230

    Google Scholar 

  • Fuchs G, Stupperich E (1978) Evidence for a incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch Microbiol 118:121–125

    Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Google Scholar 

  • Fuchs G, Stupperich E (1982) Autotrophic CO2 fixation pathway in Methanobacterium thermoautotrophicum. Zbl Bakt Hyg I. Abt Orig C 3:277–288

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive. Tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 11761–66

    Google Scholar 

  • Gottschalk G (1979) Bacterial metabolism. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Horecker BL (1975) Fructose-bisphosphate aldolase from spinach. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, Vol 42. Academic Press, New York, pp 234–239

    Google Scholar 

  • Horecker BL, Tsolas O, Lai CY (1972) Aldolases. In: Boyer PD (ed) The enzymes, Vol 6. Academic Press, New York, pp 213–258

    Google Scholar 

  • König H (1979) Chemische Untersuchungen zur Struktur der Zellwandpolymere der Gattung Methanobacterium. Thesis, University of München.

  • McFadden BA, Purohit S (1977) Itaconate, an isocitrate lyase-directed inhibitor in Pseudomonas indigofera. J Bacteriol 131:136–144

    Google Scholar 

  • Quandt L, Pfennig N, Gottschalk G (1978) Evidence for the key position of pyruvate synthase in the assimilation of CO2 by Chlorobium. FEMS Microbiol Lett 3:227–230

    Google Scholar 

  • Rutter WJ, Hunsley JR, Groves WE, Calder J, Rajkumar TV, Woodfin BM (1966) Fructose diphosphate aldolase. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol 9. Academic Press. New York, pp 479–498

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (Ksmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Simon H, Floss HG (1967) Anwendung von Isotopen in der Organischen Chemie und Biochemie, Vol. 1. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Stahl E (ed) (1967) Dünnschichtchromatographie, 2nd ed. Springer Verlag Berlin Heidelberg New York, p 851

    Google Scholar 

  • Stupperich E, Fuchs G (1981) Products of CO2 fixation and 14C labeling pattern of alanine in Methanobacterium thermoautotrophicum pulselabeled with 14CO2. Arch Microbiol 130:294–300

    Google Scholar 

  • Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Proceedings of the Symposium “Microbial production and utilization of gases (H2, CH4, CO)”. Akademie der Wissenschaften zu Göttingen, E. Goltze, Göttingen, pp 173–180

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Thomas TD, Turner KW, Crow VL (1980) Galactose fermentation by Streptococcus lactis and Streptococcus cremoris: Pathways, products, and regulation. J Bacteriol 144:672–682

    Google Scholar 

  • Thompson J (1979) Lactose metabolism in Streptococcus lactis: Phosphorylation of galactose and glucose moieties in vivo. J Bacteriol 140:774–785

    Google Scholar 

  • Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J Biol Chem 246:3120–3125

    Google Scholar 

  • Willard JM, Gibbs M (1968) Role of aldolase in photosynthesis. II. Demonstration of aldolase types in photosynthetic organisms. Plant Physiol 43:793–798

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n. an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, K., Stupperich, E. & Fuchs, G. Carbohydrate synthesis from acetyl CoA in the autotroph Methanobacterium thermoautotrophicum . Arch. Microbiol. 132, 355–364 (1982). https://doi.org/10.1007/BF00413389

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413389

Key words

Navigation