Skip to main content
Log in

Turbulent friction factor and velocity profile in smooth annuli

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A new correlation equation, based on available accurate experimental data, is derived for finding the friction factor in a smooth annulus. A single law is proposed giving the velocity profile for an annulus or a circular tube, by improving Spalding's profile with velocity as the independent variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

f :

friction factor as in Francis' equation

i:

subscript referred to inner profile

n :

radius ratio, r i/r o

o:

subscript referred to outer profile

r :

radial distance

r i :

inner radius of annulus

r o :

outer radius of annulus

r m :

radius to point of maximum velocity

Re :

Reynolds number, 2ū(r or i)/ν

S :

dimensionless radius, r m/r o

u :

axial component of velocity

ū :

average velocity

u + :

dimensionless velocity, u/(τ w/ρ)1/2

u +i :

dimensionless velocity, u/(τ wi/ρ)1/2

u +o :

dimensionless velocity, u/(τ wo/ρ)1/2

y :

distance from wall

y i :

distance from inner wall

y o :

distance from outer wall

y + :

dimensionless distance from wall, y/ν (τ w/ρ)1/2

y +i :

dimensionless distance from inner wall, y i/ν (τ wi/ρ)1/2

y +o :

dimensionless distance from outer wall, y o/ν (τ wo/ρ)1/2

μ :

dynamic viscosity

μ t :

turbulent viscosity

μ ti :

turbulent viscosity of inner region

μ to :

turbulent viscosity of outer region

ν :

kinematic viscosity, μ/ρ

ρ :

density of fluid

τ :

local shear stress

τ w :

wall shear stress

τ wi :

inner wall shear stress

τ wo :

outer wall shear stress

References

  1. Davis, E. S., Trans. ASME 65 (1943) 755.

    Google Scholar 

  2. Koch, R. and K. Feind, Chemie-Ing-Techn. 9 (1958) 577.

    Google Scholar 

  3. Brighton, J. A. and J. B. Jones, Trans. ASME 86 (1964) 835.

    Google Scholar 

  4. Rothfus, R. R., C. C. Monrad and V. E. Senecal, Industrial Engineering Chemistry 42 (1950) 2511.

    Google Scholar 

  5. Lorenz, F. R., Über turbulente Strömung durch Rohre mit kreisringförmigem Querschnitt, Mitteilungen des Institutes für Strömungsmaschinen der Technischen Hochschule Karlsruhe (1932) 26.

  6. Owen, W. M., Proc. ASCE 77 (1951) 1.

    Google Scholar 

  7. Barrow, H., Proc. General Discussion on Heat Transfer, IME and ASME, London (1955) 1113.

  8. Kays, W. M. and E. Y. Leung, Int. J. Heat Mass Transfer 6 (1963) 537.

    Google Scholar 

  9. Levy, S., Trans. ASME 28 (1967) 25.

    Google Scholar 

  10. Deissler, R. G., Recent Advances in Heat and Mass Transfer, McGraw-Hill Book Co. (1961) 253.

  11. Roberts, A., Int. J. Heat Mass Transfer 10 (1967) 709.

    Google Scholar 

  12. Spalding, D. B., Trans. ASME 28 (1961) 455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, D.N., Gangopadhay, U. Turbulent friction factor and velocity profile in smooth annuli. Appl. Sci. Res. 23, 446–458 (1971). https://doi.org/10.1007/BF00413218

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413218

Keywords

Navigation