Skip to main content
Log in

Magnetohydrodynamic Couette flow with transpiration cooling

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Transpiration cooling with magnetohydrodynamic effects is studied in a porous-wall Couette flow of a steadily moving, incompressible, electrically conducting fluid. The flow, induced by the motion of the moving wall, is subject to a uniform transverse magnetic field. A coolant fluid, with the same properties as the main-stream fluid, is uniformly injected into (or extracted from) the flow through a porous stationary wall. Solutions are presented for the velocity and induced magnetic field distributions across the parallel walls, the pressure difference induced by the magnetic drag, and the friction factor in such a flow configuration. Considerations are further given to the heat transfer characteristics wherein viscous and Ohmic heating are significant. In this connection, the recovery factor and the Nusselt number are also presented over a wide range of blowing and suction rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

magnetic field vector with components (B x , B y , B z ) in (x, y, z) directions

B x :

dimensionless magnetic field, B x /B 0

B 0 :

uniform applied magnetic field

C p :

specific heat at constant pressure

E :

electric field vector

Ē :

dimensionless electric field, E z /U 1 B 0

Ek :

Eckert number, U 21 /C p (T 1T 0)

f :

friction factor, τ 0/ρU 21

h :

heat transfer coefficient

I :

total electric current across parallel walls

J :

electric current density

L :

distance between parallel walls

M :

Hartmann number, \(\sqrt {\sigma /\rho v } B_0 L\) B 0 L

Nu :

Nusselt number, hL/κ

p :

pressure

\(\bar p\) :

dimensionless pressure, pL/ρνU 1

Pr :

Prandtl number, ρνC p /κ

Pm :

magnetic Prandtl number, Rm/Re

q 0 :

heat flux density at stationary lower wall

r :

recovery factor, (T r −T 1)/(U 21 /C p )

Re :

Reynolds number, U 1 L/ν

Rm :

magnetic Reynolds number, σμ e U 1 L

T :

temperature, with T 0 and T 1 as temperatures of the lower and upper walls

\(\bar T\) :

dimensionless temperature, (T−T 0)/(T 1T 0)

T r :

recovery temperature

U 1 :

uniform velocity of upper wall

ū :

dimensionless velocity, u/U 1

V :

fluid velocity vector with components (u, v, w) in (x, y, z) directions

\(\bar v,\bar v_0\) :

dimensionless velocity, v/U 1=v 0/U 1

v 0 :

velocity of injection or suction at the walls

(x, y, z):

rectangular coordinates

η :

dimensionless height, y/L

Φ :

viscous dissipation function

κ :

thermal conductivity

μ e :

magnetic permeability

ν :

kinematic viscosity

ρ :

fluid density

σ :

electrical conductivity

τ 0 :

shear stress at stationary lower wall

References

  1. Hartnett, J. P. and E. R. G. Eckert, Trans. ASME 79 (1959) 247.

    Google Scholar 

  2. Berman, A. S., J. Appl. Phys. 24 (1953) 1232.

    Google Scholar 

  3. Sellars, J. R., J. Appl. Phys. 26 (1955) 489.

    Google Scholar 

  4. Yuan, S. W., J. Appl. Phys. 27 (1956) 267.

    Google Scholar 

  5. Cramer, K. R., J. Aero/Space Sci. 26 (1959) 121.

    Google Scholar 

  6. Lilley, G. M., J. Aero/Space Sci. 26 (1959) 685.

    Google Scholar 

  7. Tan, C. W. and Carl C. T. Wang, Int. J. Heat & Mass Transfer 11 (1968) 627.

    Google Scholar 

  8. Suryaprakashrao, U., Appl. Sci. Res. 9 (1962) 374.

    Google Scholar 

  9. Terrill, R. M. and G. M. Shrestha, Appl. Sci. Res. 11 (1964) 134.

    Google Scholar 

  10. Shrestha, G. M., Appl. Sci. Res. 19 (1968) 352.

    Google Scholar 

  11. Tan, C. W., Appl. Sci. Res. 22 (1970) 201.

    Google Scholar 

  12. Tan, C. W., Trans. ASME 91 (1969) 184.

    Google Scholar 

  13. Eckert, E. R. G. and R. M. Drake, Jr., Heat and Mass Transfer, 2nd Ed., Mc Graw-Hill, N.Y. (1959) 301–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, C.W. Magnetohydrodynamic Couette flow with transpiration cooling. Appl. Sci. Res. 23, 167–184 (1971). https://doi.org/10.1007/BF00413195

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413195

Keywords

Navigation