Skip to main content
Log in

Nonlinear Taylor stability of viscoelastic fluids

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Using Stuart's energy method, the torque on the inner cylinder, for a second order fluid, in the supercritical regime is calculated. It is found that when the second normal stress difference is negative, the flow is more stable than for a Newtonian fluid and the torque is reduced. If the second normal stress difference is positive, then the flow is more stable and there is no torque reduction. Experimental data related to the present work are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

amplitude of the fundamentals

A (1) ij , A (2) ij :

first and second Rivlin-Ericksen tensors

d :

r 2r 1

D:

d/dx

E :

\(\frac{{2\pi r_1 r_o \eta _0^2 h}}{{\rho d^2 }}\left( {1 - \frac{{I_1 I_4 }}{{I_3 }}} \right)\)

F :

\(\frac{{2\pi r_1^2 r_o \eta _0^2 T_c h}}{{\rho d^3 }}\frac{{I_1 I_4 }}{{I_3 }}\)

g ij :

metric tensor

G :

torque on the inner cylinder in the supercritical regime

h :

height of the cylinders

k 0 :

β/ρd 2

k 1 :

γ/ρd 2

I 1 :

\(\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} - u\upsilon dx + \left( {k_o + 2k_1 } \right)r_1 /d\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} \upsilon (D^2 - \lambda ^2 ) u dx\)

I 2 :

\(\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} [(D^2 - \lambda ^2 ) u]^2 dx\)

I 3 :

\(\begin{gathered} (1 + 2k_0 \lambda ^2 )(\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} - uv dx)^2 - (1 + k_0 \lambda ^2 )\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} u^2 v^2 dx + \hfill \\ + \left( {k_0 + 3k_1 } \right)\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} - uv dx\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} u^2 v dx + \hfill \\ + k_0 \mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} (2u^3 v + 4uv Du Dv + 2u^2 (Dv)^2 + \hfill \\ + v^2 (Du)^2 )dx + k_1 \mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} (u^2 (Dv)^2 + v^2 (Du)^2 + 2uv Dv Dv + 3u^3 v) dx \hfill \\ \end{gathered}\)

I 4 :

\((1 - 2k_0 \lambda ^2 )\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} - uv dx + (k_0 - 2k_1 )\mathop \smallint \limits_{ - \tfrac{1}{2}}^{\tfrac{1}{2}} u^2 dx\)

r 1, r 2 :

radii of inner and outer cylinders respectively

r 0 :

1/2(r 1+r 2)

R :

Reynolds number Ω 1 r 1 dρ/η 0

R c :

critical Reynolds number

T :

Taylor number r 1 Ω 21 d 3 ρ 2/η 20 *)

T c :

critical Taylor number

u 1, v 1, w 1 :

Fundamentals of the disturbance

u i , v i , w i , (i>1):

harmonics

\(\bar v\) :

mean velocity (not laminar velocity)

u :

−u 1/ar 1 Ω 1

v :

v 1/Rar 1 Ω 1

x :

(r−r 0)/d

β,γ :

material constants

η0:

viscosity

λ :

wave number αd

ρ :

density

Ω 1 :

angular velocity of inner cylinder

∼:

tilde denotes complex conjugate

References

  1. Barnes, H. A. and K. Walters, Nature 216 (1967) 366.

    Google Scholar 

  2. Hershey, H. C. and J. C. Zakin, Ind. and Eng. Chem. Fundamentals 6 (1967) 381.

    Google Scholar 

  3. Seyer, F. A. and A. B. Metzner, Can. J. Chem. Eng. 45 (1967) 121.

    Google Scholar 

  4. Chan Man Fong, C. F. and K. Walters, J. de Mécanique 4 (1965) 439.

    Google Scholar 

  5. Jones, D. T. and K. Walters, A.I.Ch.E. Journal 14 (1968) 658.

    Google Scholar 

  6. Landau, L. D., Collected Papers, ed. by D. Ter Haar, Pergamon Press, Oxford, (1965) 387.

    Google Scholar 

  7. Miller, C. and J. D. Goddard, ORA Project 06673, submitted to National Aeronautics and Space Administration Washington, D.C. (1967). A study of the Taylor-Couette Stability of Viscoelastic Fluids.

  8. Stuart, J. T., J. Fluid Mech. 4 (1958) 1.

    Google Scholar 

  9. Davey, A., J. Fluid Mech. 14 (1962) 336.

    Google Scholar 

  10. Denn, M. M. and J. J. Roisman, A.I.Ch.E. Journal 15 (1969) 454.

    Google Scholar 

  11. Beard, D. W., M. H. Davies, and K. Walters, J. Fluid Mech. 18 (1966) 33.

    Google Scholar 

  12. Markovitz, H. and B. D. Coleman, Adv. in Applied Mech. 8 (1964) 69.

    Google Scholar 

  13. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability. Oxf. Univ. Press (1961) Appendix IV.

  14. Donnelly, R. J. and N. J. Simon, J. Fluid Mech. 7 (1960) 401.

    Google Scholar 

  15. Ginn, R. F. and A. B. Metzner, Trans. Soc. Rheol. 13 (1969) 429.

    Google Scholar 

  16. Jones, W. M. and D. E. Marshall, Brit. J. Appl. Phys. 2 (1969) 809.

    Google Scholar 

  17. Jones, W. M., D. E. Marshall, and D. M. Davies, British Society of Rheology Conference, Glasgow, September 1969.

  18. Coles, D. J., Fluid Mech. 21 (1965) 385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan Man Fong, C.F. Nonlinear Taylor stability of viscoelastic fluids. Appl. Sci. Res. 23, 16–22 (1971). https://doi.org/10.1007/BF00413184

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413184

Keywords

Navigation