Skip to main content
Log in

Developing turbulent flow in smooth pipes

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A numerical and experimental investigation of steady incompressible developing turbulent flow in smooth pipes is presented. Finite difference techniques are used to solve simultaneously the vorticity transport and stream function equations utilising a modified form of the Van Driest effective viscosity model. The numerical solutions are verified experimentally using air as a working fluid at pipe Reynolds 1 × 105, 2 × 105 and 3 × 105.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

coefficient in (9)

b :

coefficient in (9)

c :

coefficient in (9)

d :

coefficient in (9)

D :

pipe diameter

f:

known constant or function (23)

K:

mixing length constant (Value=26)

L :

limiting length for fully developed flow

M :

number of iterations (24) and (25)

p :

static pressure

p s :

wall static pressure

r :

radial coordinate

R :

pipe radius

Re :

pipe Reynolds number (U D/ν)

S :

defined by (5)

u :

axial mean velocity

u′ :

fluctuating component of axial velocity

U :

bulk or average velocity

U c :

centre line velocity

U cf :

centre line velocity in fully developed flow

u :

local friction velocity

v :

radial velocity

v′ :

fluctuating component of radial velocity

x :

axial coordinate

y :

distance from wall along a radial line

y + :

dimensionless distance (y +=yu⋆/ν)

α :

under-relaxation parameter

γ :

effective viscosity

ε :

eddy viscosity

λ :

convergence criterion

ν :

kinematic viscosity

ξ :

damping constant (Value=0.41)

ρ :

fluid density

φ :

variable in general elliptic equation

ψ :

stream function

ψ s :

stream function at the wall

ψ 1 :

constant of integration

ω :

mean vorticity

ω s :

mean vorticity at the wall

References

  1. Laufer, J., NACA Rept. 1174 (1954).

  2. Lawn, C. J., J. Fluid Mech. 48 (1971) 477.

    Article  ADS  Google Scholar 

  3. Holdhusen, J. S., Ph.d Thesis, University of Minnesota, 1953.

  4. Barbin, A. R., Ph.d. Thesis, Purdue University, 1965.

  5. Mizushina, T., L. Ryuso, U. Hiromasa, T. Shigeka, and H. Hideo, J. Chem. Eng., Japan 3 (1970) 34.

    Google Scholar 

  6. Brighton, D. A. and J. A. Bowlus, Trans. ASME 90 (1968) 431.

    Google Scholar 

  7. Bradley, C. I. and D. J. Cockrell, Proc. Heat Trans. and Fluid Mech. Inst., Stanford University Press, 1970.

  8. Comte Bellot, G., Pub. Sci. et Tech. due Ministere de l'Air, No. 419 (1965).

  9. van Driest, E. R., Trans. ASME 78 (1956) 915.

    Google Scholar 

  10. Gosman, A. D., W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfshstein, Heat and Mass Trans. in Recirculating Flows, Academic Press, 1969.

  11. Hirst, D. E. and E. A. Coles, Computation of Turbulent Boundary Layers, 2. Stanford University Press, 1968.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richman, J.W., Azad, R.S. Developing turbulent flow in smooth pipes. Appl. Sci. Res. 28, 419–441 (1973). https://doi.org/10.1007/BF00413081

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413081

Keywords

Navigation