Skip to main content
Log in

Diffraction of a plane electromagnetic wave by a perfectly conducting elliptic cylinder

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The scattering of a plane electromagnetic wave by a perfectly conducting elliptic cylinder is investigated theoretically. The calculations are based upon the expansion of the scattered wave functions in terms of Mathieu functions. Both E- and H-polarized waves are considered. Numerical results, in particular for the scattering cross-section, are presented for cylinders the cross-sectional dimensions of which are up to many wavelengths (e.g. distance between the focal lines up to 20 wavelengths).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

electric field vector

c :

parameter pertaining to the cross-section of the elliptic cylinder (c=2hπ/λ)

ce n :

Matthieu function of first kind and order n

h :

half the focal distance

H :

magnetic field vector

i x, y, z, η, ξ :

unit vector in x, y, z, η, ξ-direction, respectively

k :

wave number (k=ω(ε 0 μ 0)1/2)

Mc (j) n :

modified Mathieu function of kind j and order n

Ms (j) n :

modified Mathieu function of kind j and order n

q :

parameter pertaining to the cross-section of the elliptic cylinder (q=k 2 h 2/4)

se n :

Mathieu function of first kind and order n

t :

time

U :

scalar wave function defined by (2.1)

x, y, z :

Cartesian coordinates

Z :

wave impedance (Z=(μ 0/ε 0)1/2)

ε 0 :

permittivity of vacuum

η :

angular elliptic coordinate

θ :

angle between x-axis and direction of propagation of incident wave

λ :

wavelength in free space

μ 0 :

permeability of vacuum

ξ :

radial elliptic coordinate

ξ 0 :

value of ξ on the boundary of elliptic cylinder

σ s :

scattering cross-section

ω :

angular frequency

x, y, η, ξ :

partial differentiation with respect to x, y, η, ξ

References

  1. Barakat, R., J. Acoust. Soc. Am. 35 (1963) 1990.

    Article  ADS  Google Scholar 

  2. Bowman, J. J., T. B. A. Senior and P. L. E. Uslenghi, Electromagnetic and acoustic scattering by simple shapes, North-Holland Publishing Company, Amsterdam, 1969. Numerical results of R. Barakat in Chapters 3 and 4.

  3. Burke, J. E. and V. Twersky, J. Opt. Soc. Am. 54 (1964) 732.

    Article  ADS  Google Scholar 

  4. Robin, L., C.R. Acad. Sc. Paris 260 (1965) 435.

    MATH  MathSciNet  Google Scholar 

  5. On the computation of Mathieu functions. Group “Numerical Analysis” at Delft University of Technology, J. Eng. Math. 7 (1973) 39.

    Article  Google Scholar 

  6. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical functions, Dover Publications, Inc., New York, 1965.

  7. Meixner, J. and F. W. Schafke, Mathieusche Funktionen und Sphäroidfunktionen Springer-Verlag, Berlin, Göttingen, Heidelberg, 1954.

    Google Scholar 

  8. Blanch, G., SIAM Review 6 (1964) 383.

    Article  MATH  MathSciNet  Google Scholar 

  9. Wilkinson, J. H., The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965.

    MATH  Google Scholar 

  10. Hoop, A. T. de, Appl. Sci. Res. B7 (1959) 463.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, P.M., van Schaik, H.J. Diffraction of a plane electromagnetic wave by a perfectly conducting elliptic cylinder. Appl. Sci. Res. 28, 145–157 (1973). https://doi.org/10.1007/BF00413063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413063

Keywords

Navigation