Skip to main content
Log in

Nonlinear problem of an electrical discharge in a flow

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The nonlinear intial boundary value problem describing the relaxation of a quasi-neutral discharge in a gas flow with coplanar, heated and nonheated electrodes of finite extension is formulated in the diffusion approximation. Relaxation occurs from an initial breakdown to a steady-state or zero discharge in a weak electric field. A nonlinear transformation is applied to get an equivalent nonlinear problem, where nonlinearity is treated as a small perturbation. An analytic solution is obtained and criterions for existence and sustainment of a steady-state discharge against plasma losses due to convection, diffusion and recombination is discussed. Some numerical results are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

2a :

length of electrodes

2b :

width of electrodes and channel

2c :

distance between electrodes

D :

diffusion coefficient

f :

plasma density at steady state

\(\hat f\) :

plasma density at the electrodes

n :

plasma density

t :

time

u :

plasma density after nonlinear transformation

V :

blowout (convection) velocity

x :

downstream coordinate

y, z :

Cartesian coordinates with x

α :

recombination coefficient

ε :

production of plasma by electron collision ionization-coefficient of

References

  1. Francis, G., Ionization Phenomena in Gases, Butterworths Scientific Publications, London, 1960.

    MATH  Google Scholar 

  2. Zauderer, B., Phys. Fluids 11 (1968) 2578.

    Article  ADS  Google Scholar 

  3. Wilhelm, H. E. and B. Zauderer, Electricity from MHD Vol. 11. 733, International Atomic Energy Agency, Vienna, 1968.

    Google Scholar 

  4. Zauderer, B., AIAA J. 7 (1969) 2189.

    Article  ADS  Google Scholar 

  5. Schottky, W., Z. Physik 25 (1924) 324.

    Google Scholar 

  6. Golant, V. E., Sov. Phys. — USPEKHI 6 (1967) 161.

    Article  Google Scholar 

  7. Nordheim, L., Z. Physik 30 (1929) 177.

    MATH  Google Scholar 

  8. Wilhelm, H. E., J. MATH. Phys. 13 (1972) 252.

    Article  ADS  Google Scholar 

  9. Wilhelm, H. E. and N. Liron, Phys. Fluids. 15 (1972) 1328.

    Article  ADS  Google Scholar 

  10. Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. at the Clarendon Press, Oxford, 1959.

    Google Scholar 

  11. Abramowitz, M. and I. A. Stegun, ed. Handbook of Mathematical Functions, Dover Publication, Inc., N.Y. 1965.

    Google Scholar 

  12. Baranov, V. Y. and I. A. Vasil'eva, High Temp. 2 (1964) 609.

    Google Scholar 

  13. Baranov, V. Y. and I. A. Vasil'eva, ibid 3 (1965) 166.

    Google Scholar 

  14. Baranov, V. Y. and I. A. Vasil'eva, ibid 4 (1966) 585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liron, N. Nonlinear problem of an electrical discharge in a flow. Appl. Sci. Res. 28, 1–19 (1973). https://doi.org/10.1007/BF00413053

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413053

Keywords

Navigation