Skip to main content
Log in

Das Verhalten von Nitratreductase, Nitritreductase, Hydrogenase und anderen Enzymen von Ankistrodesmus braunii bei Stickstoffmangel

Nitrate reductase, nitrite reductase, hydrogenase, and other enzymes in nitrogen-deficient Ankistrodesmus braunii

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

An oxidation of organic nitrogen compounds leading to an intracellular formation of nitrite and nitrate (heterotrophic nitrification) was found in nitrogen-deficient Ankistrodesmus braunii. This explains the rather high levels of nitrate and nitrite reductases observed in algae after the supply of nitrogen has been exhausted.

Hydrogenase is active also in nitrogen-deficient algae which, however, can no longer use nitrite as an acceptor for hydrogen. The activation of hydrogenase is energy-dependent and can be inhibited by means of antibiotics (actinomycin C, puromycin, and gentamycin). Protein synthesis seems to take place during incubation under hydrogen.

For comparison, several other enzymes [glucose-6-phosphate dehydrogenase, NAD(P) reductase, glyoxylate reductase, catalase, malate dehydrogenase, glutamate dehydrogenase, and isocitratase) were studied in nitrogen-deficient cells.

Zusammenfassung

Bei der N-Verarmung von Ankistrodesmus braunii wurde eine intracelluläre Bildung von Nitrit und Nitrat durch heterotrophe Nitrifikation festgestellt, die charakteristisch für den beginnenden N-Mangel ist. Damit wird die hohe Nitrat- und Nitritreductaseaktivität bei N-Mangelalgen verständlich.

Die Hydrogenase ist auch bei N-verarmten Algen aktiv, doch kann Nitrit nicht mehr als H-Acceptor verwendet werden. Die Aktivierung des Enzyms ist energieabhängig und durch Antibiotica (Actinomycin C, Puromycin, Gentamycin) hemmbar. Offenbar findet während der Inkubation mit Wasserstoff eine Proteinsynthese statt.

Zum Vergleich wurde das Verhalten einiger anderer Enzyme [Glucose-6-phosphat-dehydrogenase, NAD(P)-Reductase, Glyoxylat-reductase, Katalase, Malat-dehydrogenase, Glutamat-dehydrogenase, Isocitratase] bei N-Mangel untersucht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G-6-P-DH:

Glucose-6-phosphat-dehydrogenase

M-DH:

Malat-dehydrogenase

Glu-DH:

Glutamat-dehydrogenase

NAD(P)-R:

Nicotinamid-adenin-dinucleotid(phosphat)-reductase

CCCP:

Carbonylcyanid-mchlorophenylhydrazon

DNP:

2,4-Dinitrophenol

MB:

Methylenblau

Literatur

  • Arnon, D. I.: Copper enzyme in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).

    Google Scholar 

  • Beisenherz, G., Boltze, H. J., Bücher, T., Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructo-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555–577 (1953).

    Google Scholar 

  • Cresswell, C. F., Hewitt, E. J.: Oxidation of hydroxylamine by plant enzyme systems. Biochem. biophys. Res. Commun. 3, 544–548 (1960).

    Google Scholar 

  • Czygan, F.-C.: Untersuchungen über die Nitratreduktion der Grünalge Ankistrodesmus braunii in vivo und in vitro. Planta (Berl.) 60, 225–242 (1963).

    Google Scholar 

  • —: Untersuchungen über den Abbau von Chloramphenicol durch Grünalgen. Naturwissenschaften 51, 541 (1964).

    Google Scholar 

  • Dersch, G.: Mineralsalzmangel und Sekundärcarotinoide in Grünalgen. Flora (Jena) 149, 566–603 (1960).

    Google Scholar 

  • Fogg, G. E.: Nitrogen nutrition and metabolic patterns in algae. Symp. Soc. exp. Biol. 13, 106–125 (1959).

    Google Scholar 

  • Frenyó, V.: The formation of nitrate in plant tissues. Ann. Univ. Sci. Budapest, Sect. Biol. 8, 77–85 (1966).

    Google Scholar 

  • Joy, K. W., Hageman, R. H.: The purification and properties of nitrite reductase from higher plants, and its dependence on ferredoxin. Biochem. J. 100, 263–273 (1966).

    Google Scholar 

  • Kessler, E.: Über die Wirkung von 2,4-Dinitrophenol auf Nitratreduktion und Atmung von Grünalgen. Planta (Berl.) 45, 94–105 (1955).

    Google Scholar 

  • —: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. II. Dunkelreduktion von Nitrat und Nitrit mit molekularem Wasserstoff. Arch. Mikrobiol. 27, 166–181 (1957).

    Google Scholar 

  • —: Hydrogenase und H2-Stoffwechsel bei Algen. Vortr. Gesamtgebiet Bot., N.F. 1, 92–101 (1962).

    Google Scholar 

  • —: Nitrate assimilation by plants. Ann. Rev. Plant. Physiol. 15, 57–71 (1964).

    Google Scholar 

  • —: The effect of glucose on hydrogenase activity in Chlorella. Biochim. biophys. Acta (Amst.) 112, 173–175 (1966).

    Google Scholar 

  • —: Iron supply and hydrogenase activity in green algae. Arch. Mikrobiol. 61, 77–80 (1968a).

    Google Scholar 

  • —: Effect of manganese deficiency on growth and chlorophyll content of algae with and without hydrogenase. Arch. Mikrobiol. 63, 7–10 (1968b).

    Google Scholar 

  • —: Photosynthesis, photooxidation of chlorophyll, and fluorescence of normal and manganese-deficient Chlorella with and without hydrogenase. Planta (Berl.) 92, 222–234 (1970).

    Google Scholar 

  • —, Czygan, F.-C.: Physiologische und biochemische Beiträge zur Taxonomie der Gattung Chlorella. IV. Verwertung organischer Stickstoffverbindungen. Arch. Mikrobiol. 70, 211–216 (1970).

    Google Scholar 

  • —, Oesterheld, H.: Nitrification and induction of nitrate reductase in nitrogendeficient algae. Nature (Lond.) 228, 287–288 (1970).

    Google Scholar 

  • Knutsen, G.: Induction of nitrite reductase in synchronized cultures of Chlorella pyrenoidosa. Biochim. biophys. Acta (Amst.) 103, 495–502 (1965).

    Google Scholar 

  • Marshall, K. C.: The role of β-alanine in the biosynthesis of nitrate by Aspergillus flavus. Antonie v. Leeuwenhoek 31, 386–394 (1965).

    Google Scholar 

  • Milanesi, G., Ciferri, O.: Studies on the mechanism of action of gentamicin. Effect on the protein synthesis in cell-free extracts of Escherichia coli. Biochemistry 5, 3926–3935 (1966).

    Google Scholar 

  • Morris, I., Syrett, P. J.: The effect of nitrogen starvation on the activity of nitrate reductase and other enzymes in Chlorella. J. gen. Microbiol. 38, 21–28 (1965).

    Google Scholar 

  • Oesterheld, H.: Das Verhalten von Nitratreductase, Nitritreductase, Hydrogenase und anderer Enzyme von Ankistrodesmus braunii bei Stickstoffmangel. Dissertation, Erlangen 1970.

  • Pirson, A.: Functional aspects in mineral nutrition of green plants. Ann. Rev. Plant Physiol. 6, 71–114 (1955).

    Google Scholar 

  • Pollock, M. R.: Induced formation of enzymes. The Enzymes, Vol. 1, pp. 619–680. New York: Academic Press 1959.

    Google Scholar 

  • Schindler, J., Schlegel, H. G.: Regulation der Glucose-6-phosphat-Dehydrogenase aus verschiedenen Bakterienarten durch ATP. Arch. Mikrobiol. 66, 69–78 (1969).

    Google Scholar 

  • Shibata, M., Kobayashi, M., takahashi, E.: The possibility of photoinduced induction of nitrate reductase in rice seedlings. Plant Cell Physiol. 10, 337–348 (1969).

    Google Scholar 

  • Stiller, M.: Hydrogenase mediated nitrite reduction in Chlorella. Plant. Physiol. 41, 348–352 (1966).

    Google Scholar 

  • Stiller, M., Lee, J. K. H.: Hydrogenase activity in Chlorella. Biochim. biophys. Acta (Amst.) 93, 174–176 (1964a).

    Google Scholar 

  • ——: Hydrogenase-mediated reactions in Chlorella. Plant. Physiol. 39, XV (1964b).

    Google Scholar 

  • Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen-starved cells of Chlorella vulgaris. II. The assimilation of large quantities of nitrogen. Physiol. Plant. (Copenh.) 9, 19–27 (1956).

    Google Scholar 

  • — Merrett, M. J., Bocks, S. M.: Enzymes of the glyoxylate cycle in Chlorella vulgaris. J. exp. Bot. 14, 249–264 (1963).

    Google Scholar 

  • Vaklinova, S.: Photooxidation of hydroxylamine in isolated chloroplasts. Dokl. Bolgar. Akad. Nauk. 17, 283–285 (1964).

    Google Scholar 

  • Virtanen, A.: Influence of the nitrogen content of cells on their enzymatic activity. Ann. Med. exp. Fenn. 30, 234–248 (1952).

    Google Scholar 

  • Ward, M. A.: Adaptation of hydrogenase in cell-free preparations from Chlamydomonas. Phytochemistry 9, 267–274 (1970).

    Google Scholar 

  • Yamafuji, K., Osajima, Y.: Dehydrogenation of ammonia to nitrate by enzymes isolated from green algae. Enzymologia 26, 75–86 (1963).

    Google Scholar 

  • Zumft, W. G., Paneque, A., Aparicio, P. J., Losada, M.: Mechanism of nitrate reduction in Chlorella. Biochem. biophys. Res. Commun. 36, 980–986 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oesterheld, H. Das Verhalten von Nitratreductase, Nitritreductase, Hydrogenase und anderen Enzymen von Ankistrodesmus braunii bei Stickstoffmangel. Archiv. Mikrobiol. 79, 25–43 (1971). https://doi.org/10.1007/BF00412038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00412038

Navigation