Skip to main content
Log in

Axial dispersion of solids in rotary solid flow systems

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Summary

A simple unidirectional diffusion model is employed to analyze the axial dispersion of solid particles flowing through a rotary solid flow system, namely a rotary dryer. It is shown that the reciprocal of the Peclet number D/uL is uniquely correlated as a function of the dimensionless number F/dSN which characterizes the operating conditions of the rotary dryer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

concentration of tracer, mass/(length)3

d :

diameter of rotary dryer, length

d p :

diameter of solid particles, length

D :

longitudinal dispersion coefficient or axial mixing coefficient, (length)2/time

F :

volumetric flow rate of solid, (length)3/(length)2 time

L :

length of rotary dryer, length

N :

rate of rotations of dryer, time−1

Q :

volume of tracer injected, based on bulk density of particles, (length)3

S :

slope of the rotary dryer

u :

average flow velocity, based on effective flow volume of dryer, length/time

v :

volumetric flow rate, based on bulk density of particles, (length)3/time

V :

effective volume of rotary dryer, (length)3

x :

distance from entrance of experimental section of dryer, length

θ :

time, measured from instant of introducing tracer into flowing material

1−ε :

volumetric solid hold-up fraction

σ :

standard deviation

σ 2 :

variance

σ r :

relative standard deviation

References

  1. Leva, M., Fluidization, McGraw-Hill Book Co., N. Y., 1959.

    Google Scholar 

  2. Levenspiel, O., Industr. Engng. Chem. 50 (1958) 343.

    Article  Google Scholar 

  3. Danckwerts, P. D., Chem. Eng. Sci. 2 (1953).

  4. Deisler, P. F. and R. H. Wilhelm, Industr. Engng Chem. 45 (1953) 1219.

    Article  Google Scholar 

  5. Yagi, S. and T. Miyauchi, Chem. Eng. (Japan) 19 (1955) 27.

    Google Scholar 

  6. Otake, T., and E. Kunigita, Advances in Reaction Kinetics, Soc. Chem. Eng. (Japan), 1959.

  7. Otake, T., and E. Kunigita, Chem. Eng. (Japan) 22 (1958) 144.

    Google Scholar 

  8. Levenspiel, O. and W. K. Smith, Chem. Eng. Sci. 6 (1957) 227.

    Article  Google Scholar 

  9. Ebach, E. A. and R. R. White, Chem. Eng. Progr. 4 (1958) 161.

    Google Scholar 

  10. Massimilla, et al., La Ricerca Scientifica, Anno 27° N. 5, Maggio, 1957.

  11. Trawinske, H., Chem. Eng. Techn. 25 (1953) 229.

    Article  Google Scholar 

  12. Bart, R., Sc. D. Thesis, M. I. T., 1950.

  13. Miskell, F. and W. R. Marshall, Chem. Eng. Progr. 52 (1956) 35.

    Google Scholar 

  14. Yagi, S. and T. Miyauchi, Chem. Eng. (Japan) 17 (1953) 382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, LT., Ahn, YK. Axial dispersion of solids in rotary solid flow systems. Appl. sci. Res. 10, 465 (1961). https://doi.org/10.1007/BF00411939

Download citation

  • Received:

  • DOI: https://doi.org/10.1007/BF00411939

Keywords

Navigation