Skip to main content
Log in

Thiosulfate-linked ATP-dependent NAD+ reduction in Rhodopseudomonas palustris

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

A cytochrome containing fraction virtually devoid of the photosynthetic apparatus (bacteriochlorophyll and/or chromatophores) was isolated from Rps. palustris grown photolithotrophically with S2O3 =as the exogenous electron donor. This fraction contained predominantly cytochromes of c, a and o type and exhibited thiosulfate: cytochrome c oxidoreductase and ferrocytochrome c:O2 oxidoreductase activities. Under anaerobic conditions the enzyme preparation catalyzed an ATP-dependent NAD+ reduction by S2O3 =in the dark involving a reversal of electron transfer from cytochrome c and yielding a molar stoichiometry of approximately 2:1 for the ferrocytochrome c oxidized and NAD+ reduced. In this process approximately 4 to 7 molar equivalents of ATP were utilized/equivalent of NAD+ reduced. The optimal reaction occurred at pH 8.0 and in the presence of 55 μM added mammalian cyt. c, 1.7 mM Mg++, 1.7 mM ATP and 7.0 mM S2O3 =. The S2O3 =-linked ATP-driven reduction of NAD+ as well as the coupled oxidation of cyt. c were inhibited completely by 5 μm CCCP or 10 μM DNP and the reaction was also markedly sensitive to other uncouplers of the energy transfer reactions. The pathway of electron transfer from S2O3 = to NAD+ appears to involve cyt. c, b, and flavoprotein systems as evidenced by the complete inhibition of the process by low concentrations of antimycin A, NOQNO, rotenone and amytal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAL:

British Anti-Lewisite (2,3-Dimercaptopropanol)

CCCP:

Carbonyl-cyanide-m-chlorophenylhydrazone

DBP:

2,6-Dibromophenol

DNP:

2,4-Dinitrophenol

EDTA:

Ethylenediamine tetraacetic acid

GSH:

reduced glutathione

NOQNO:

2-n-Nonyl-4-hydroxyquinoline-N-oxide

PCP:

Pentachlorophenol

PABA:

p-aminobenzoic acid.

References

  • Aleem, M. I. H.: Thiosulfate oxidation and electron transport in Thiobacillus novellus. J. Bact. 90, 95–101 (1965).

    Google Scholar 

  • —: Generation of reducing power in chemosynthesis. II. Energy-linked reduction of pyridine nucleotides in the chemoautotroph, Nitrosomonas europaea. Biochim. biophys. Acta (Amst.) 113, 216–224 (1966a).

    Google Scholar 

  • —: Generation of reducing power in chemosynthesis. III. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus. J. Bact. 91, 729–736 (1966b).

    Google Scholar 

  • —, Lees, H., Nicholas, D. J. D.: Adenosine triphosphate-dependent reduction of nicotinamide adenosine dinucleotide by ferro-cytochrome c in chemoautotrophic bacteria. Nature (Lond.) 200, 759–761 (1963).

    Google Scholar 

  • Amesz, J.: Kinetics, quantum requirement and action spectrum of light-induced phosphopyridine nucleotide reduction in Rhodospirillum rubrum and Rhodopseudomonas spheroides. Biochim. biophys. Acta (Amst.) 66, 22–36 (1963).

    Google Scholar 

  • Arnon, D. I.: Photosynthetic electron transport and phosphorylation in chloroplasts. In: Photosynthetic mechanisms of green plants, Natl. Acad. Sci.-Natl. Res. Council, Washington 1963, pp. 195–212.

    Google Scholar 

  • Arnon, D. I., Losada, M., Nozaki, M., Tagawa, K.: Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature (Lond.) 190, 601–606 (1961).

    Google Scholar 

  • Bose, S. K., Gest, H.: Hydrogenase and light-stimulated electron transfer reactions in photosynthetic bacteria. Nature (Lond.) 195, 1168–1171 (1962).

    Google Scholar 

  • ——: Relationships between energy-generation and electron transfer in bacterial photosynthesis. In: Energy-linked functions of mitochondria (B. Chance, ed.), pp. 207–218. New York: Academic Press 1963.

    Google Scholar 

  • Chance, B., Hollunger, G.: The interaction of energy and electron transfer reactions in mitochondria. IV. The pathway of electron transfer. J. biol. Chem. 236, 1562–1568 (1961).

    Google Scholar 

  • —, Nishimura, M.: On the mechanism of chlorophyll-cytochrome interaction: The temperature insensitivity of light-induced cytochrome oxidation in Chromatium. Proc. nat. Acad. Sci. (Wash.) 46, 19–24 (1960).

    Google Scholar 

  • —, Olson, J. M.: Primary metabolic events associated with photosynthesis. Arch. Biochem. 88, 54–58 (1960).

    Google Scholar 

  • Clayton, R. K.: Absorption spectra of photosynthetic bacteria and their chlorophylls. In: Bacterial photosynthesis (H. Gest, A. San Pietro and L. P. Vernon, eds.), pp. 495–500. Yellow Springs, Ohio: The Antioch Press 1963.

    Google Scholar 

  • Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y.: Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. cell. comp. Physiol. 49, 25–68 (1957).

    Google Scholar 

  • Eley, J. H., Knobloch, K., Aleem, M. I. H.: Characteristics of thiosulfate: cytochrome c reductase and cytochrome c: O2 oxidoreductase in Rhodopseudomonas palustris. Bact. Proc. 1971, 148.

  • French, C. S., Young, V. M. K.: The absorption, action and fluorescence spectra of photosynthetic pigments in living cells and in solutions. In: Radiation biology. Vol. III: Visible and near-visible light (A. Hollaender, ed.), pp. 343–391. New York: McGraw-Hill Book Company, Inc. 1956.

    Google Scholar 

  • Frenkel, A. W.: Simultaneous reduction of diphosphopyridine nucleotide and oxidation of reduced flavin mononucleotide by illuminated bacterial chromatophores. J. Amer. chem. Soc. 80, 3479–3480 (1958).

    Google Scholar 

  • Gest, H.: Comparative biochemistry of photosynthetic processes. Nature (Lond.) 209, 879–882 (1966).

    Google Scholar 

  • Gibson, J., Morita, S.: Changes in adenine nucleotide of intact Chromatium D produced by illumination. J. Bact. 93, 1544–1550 (1967).

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., David, M. M.: Determination of serum proteins by means of the biuret reactions. J. biol. Chem. 117, 751–766 (1949).

    Google Scholar 

  • Govindjee, R., Sybesma, C.: Light-induced reduction of pyridine nucleotide and its relation to light-induced electron transport in whole cells of Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 223, 251–260 (1970).

    Google Scholar 

  • Hutner, S. H.: Organic growth essentials of the aerobic non-sulfur photosynthetic bacteria. J. Bact. 52, 213–224 (1946).

    Google Scholar 

  • Jackson, J. B., Crofts, A. R.: Energy-linked reduction of NAD(P) in cells of Rhodospirillum rubrum. Biochem. biophys. Res. Commun. 32, 908–915 (1968).

    Google Scholar 

  • Jones, O. T. G., Whale, F. R.: The oxidation and reduction of pyridine nucleotides by Rhodopseudomonas spheroides and Chlorobium thiosulfatophilum. Arch. Mikrobiol. 72, 48–59 (1970).

    Google Scholar 

  • Keister, D. L., Yike, N. J.: Studies on an energy-linked nucleotide transhydrogenase in photosynthetic bacteria. I. Demonstration of the reaction in Rhodospirillum rubrum. Biochem. biophys. Res. Commun. 24, 519–525 (1966).

    Google Scholar 

  • Keister, D. L., Yike, N. J.: Energy-linked reactions in photosynthetic bacteria. I. Succinate-linked ATP-driven NAD+ reduction by Rhodospirillum rubrum. Arch. Biochem. 121, 415–422 (1967).

    Google Scholar 

  • Klemme, J. H.: Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Z. Naturforsch. 24b, 67–76 (1969).

    Google Scholar 

  • Kornberg, A.: Reversible enzymatic synthesis of diphosphopyridine nucleotide and inorganic pyrophosphate. J. biol. Chem. 182, 779–793 (1950).

    Google Scholar 

  • Losada, M., Trebst, A. V., Ogata, S., Arnon, D. I.: Equivalence of light and adenosine triphosphate in bacterial photosynthesis. Nature (Lond.) 186, 753–760 (1960).

    Google Scholar 

  • Löw, H., Alm, B.: Reversed electron transport in photophosphorylative particles from Rhodospirillum rubrum in the dark. Abstr. Federation of Europ. Biochem. Societies, 1st meeting, London, 1964, p. 68.

  • Niel, C. B. van: The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bact. Rev. 8, 1–118 (1944).

    Google Scholar 

  • Nozaki, M., Tagawa, K., Arnon, D. L.: Metabolism of photosynthetic bacteria. II. Certain aspects of cyclic and noncyclic photophosphorylation in Rhodospirillum rubrum. In: Bacterial photosynthesis (H. Gest, A. San Pietro, and L. P. Vernon, eds.), pp. 175–194. Yellow Springs, Ohio: The Antioch Press 1963.

    Google Scholar 

  • Peeters, T., Aleem, M. I. H.: Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans. Arch. Mikrobiol. 71, 319–330 (1970).

    Google Scholar 

  • Rolls, J. P., Lindstrom, E. S.: Induction of a thiosulfate-oxidizing enzyme in Rhodopseudomonas palustris. J. Bact. 94, 784–785 (1967a).

    Google Scholar 

  • ——: Effect of thiosulfate on the photosynthetic growth of Rhodopseudomonas palustris. J. Bact. 94, 860–866 (1967b).

    Google Scholar 

  • Sewell, D. L., Aleem, M. I. H.: Generation of reducing power in chemosynthesis. V. The mechanism of pyridine nucleotide reduction by nitrite in the chemoautotroph Nitrobacter agilis. Biochim. biophys. Acta (Amst.) 172, 467–475 (1969).

    Google Scholar 

  • Shibata, K., Benson, A. A., Calvin, M.: The absorption spectra of suspensions of living organisms. Biochim. biophys. Acta (Amst.) 15, 461–470 (1954).

    Google Scholar 

  • Sörbo, B. O.: A colorimetric method for the determination of thiosulfate. Biochim. biophys. Acta (Amst.) 23, 412–416 (1957).

    Google Scholar 

  • Trebst, A., Pistorius, E., Balscheffsky, H.: p-Phenylenediamines as electron donors for photosynthetic pyridine nucleotide reduction in chromatophores from Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 143, 257–260 (1967).

    Google Scholar 

  • Vernon, L. P.: Bacterial photosynthesis. Ann. Rev. Plant Physiol. 15, 73–100 (1964).

    Google Scholar 

  • —: Photochemical and electron transport reactions in bacterial photosynthesis. Bact. Rev. 32, 243–261 (1968).

    Google Scholar 

  • Vredenberg, W. J., Amesz, J.: Absorption bands of bacteriochlorophyll types in purple bacteria and their response to illumination. Biochim. biophys. Acta (Amst.) 126, 244–253 (1966).

    Google Scholar 

  • Yamanaka, T., Kamen, M. D.: Purification of an NADP-reductase and of ferredoxin derived from the facultative photoheterotroph, Rhodopseudomonas palustris. Biochem. biophys. Res. Commun. 18, 611–616 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Post doctorate fellow of the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knobloch, K., Eley, J.H. & Aleem, M.I.H. Thiosulfate-linked ATP-dependent NAD+ reduction in Rhodopseudomonas palustris . Archiv. Mikrobiol. 80, 97–114 (1971). https://doi.org/10.1007/BF00411876

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411876

Keywords

Navigation