Skip to main content
Log in

Wall shear stress prediction in three-dimensional turbulent boundary layers

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A method is developed to infer the wall shear stress for three-dimensional turbulent boundary layers based on the assumption that the resultant surface shear stress and the effective velocity based on Prahlad's model correlates the velocity profile into its two-dimensional form. Existence of the near wall region similarity has been demonstrated for three-dimensional turbulent boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A and B:

constants connected with log-law, Eq. (1)

\(c_{f_1 } \) :

skin-friction coefficient in the main flow direction

\(F\left( {\frac{y}{\delta }} \right)\)):

QSW or Coles function

\(F_1 \left( {\frac{y}{\delta }} \right)\) :

QSW function

\(F_2 \left( {\frac{y}{\delta }} \right)\) :

Coles function

H :

shape parameter

n :

exponent in power-law profile, Eq. (4)

QSW:

quarter-sine wave function

q :

resultant velocity

q * :

resultant shear velocity

q + :

non-dimensionalised velocity vector = q/q *

U :

free stream velocity

u :

main stream velocity component in the boundary layer

u * :

shear velocity in the main stream direction

V :

effective velocity

w :

cross-flow component in the boundary layer

y :

coordinate normal to the surface of the wall

β :

angle between the velocity vector at any point with velocity vector at y=δ

β 0 :

limiting wall-stream angle

δ :

boundary layer thickness

ϑ 11 :

momentum thickness for velocity profile in main stream direction

ν :

kinematic viscosity

η :

y/δ

η + :

yq *

p :

density of fluid

τ wx :

wall shear stress in main stream direction

τ wz :

wall shear stress in cross-flow direction

References

  1. Swamy, N. V. C., ZFW 19 (1971) 496.

    Google Scholar 

  2. Pierce, F. J. and D. Krommenhoek, AD 680 973 Durhan (1969).

  3. East, L. F. and R. P. Hoxey, ARC R and M 3653 (1971).

  4. Prahlad, T. S., J. AIAA 6 (1968) 1772.

    Article  ADS  Google Scholar 

  5. Clauser, F. H., J. Aeron. Sci. 21 (1954) 91.

    Google Scholar 

  6. Pierce, F. J. and J. Zimmermann, J. Fluids Eng. 95 (1973) 61.

    Google Scholar 

  7. White, F. M., Viscous fluid flow, McGraw Hill Book Company, 1974.

  8. Hornung, H. G. and P. N. Joubert, J. Fluid Mech. 15 (1963) 368.

    Article  MATH  ADS  Google Scholar 

  9. Coles, D., J. Fluid Mech. 1 (1956) 191.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Johnston, J. P., J. Basic Eng. 82 (1960) 233.

    Google Scholar 

  11. Perry, A. E. and P. N. Joubert, J. Fluid Mech. 22 (1965) 285.

    Article  MATH  ADS  Google Scholar 

  12. White, F. M., R. C. Lessmann and G. H. Christoph, Air Force Flight Dynam. Lab., Ohio, Rep. AFFDL-TR 72–136 (1972).

  13. Swamy, N. V. C. and P. A. Aswatha Narayana, Zeitschr. Flugw. 23 (1975) 400.

    Google Scholar 

  14. Swamy, N. V. C. and P. A. Aswatha Narayana, Zeitschr. Flugw. Weltraum. 1 (1977) 414.

    Google Scholar 

  15. Doenhoff, V. and N. Tetervin, NACA Rep. 771 (1943).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swamy, N.V.C., Aswatha Narayana, P.A. Wall shear stress prediction in three-dimensional turbulent boundary layers. Appl. Sci. Res. 33, 471–480 (1977). https://doi.org/10.1007/BF00411826

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411826

Keywords

Navigation