Skip to main content
Log in

Maximum density effects on convective instability of horizontal plane poiseuille flows in the thermal entrance region

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A linear stability analysis is used to study the conditions marking the onset of secondary flow in the form of longitudinal vortices for plane Poiseuille flow of water in the thermal entrance region of a horizontal parallel-plate channel by a numerical method. The water temperature range under consideration is 0∼30°C and the maximum density effect at 4°C is of primary interest. The basic flow solution for temperature includes axial heat conduction effect and the entrance temperature is taken to be uniform at far upstream location jackie=−∞ to allow for the upstream heat penetration through thermal entrance jackie=0. Numerical results for critical Rayleigh number are obtained for Peclet numbers 1, 10, 50 and thermal condition parameters (λ 1, λ 2) in the range of −2.0≤λ 1≤−0.5 and −1.0≤λ 2≤1.4. The analysis is motivated by a desire to determine the free convection effect on freezing or thawing in channel flow of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

temperature difference ratio, (T 1T max)/ΔT

A n, Bn, Cn, Dn :

coefficients of infinite series defined by eqs. (5) and (6)

a :

dimensionless wave number

D :

operator, d/dz

f :

(1−λ 1 φ+λ 2 φ 2)

Gr :

Grashof number defined below eq. (14)

g :

gravitational acceleration

L, l :

height of channel and L/2

P, P b :

liquid pressure (P b+P′) and basic flow pressure

Pe :

Peclet number, 4U m l/α=Re Pr

Pr :

Prandtl number, ν/α

p :

dimensionless perturbation pressure, P′/(ρν 2/L 2)

Ra :

Rayleigh number, Pr Gr

Re :

Reynolds number, 4U m l/ν

T, T b, T m, T 0 :

water temperature (T b+θ′), basic flow temperature, (T 1+T 2)/2 and uniform upstream temperature

T 1, T 2, T max :

constant lower and upper plate temperatures, and maximum density temperature (4°C)

U b, U m, u b :

axial and mean velocities and (U b/U m) of basic flow

u, v, w :

dimensionless perturbation velocity components, (U′, V′, W′)/(ν/L)

X, Y, Z :

Cartesian coordinates with origin at lower plate

x, y, z :

(X, Y, Z)/L

x′, z′ :

(X′/(3/8)lPe, Z′/l)

jackie :

transformed coordinates, (x/(3Pe/16), z)

Y n, Rn, Fn, Zn :

eigenfunctions

Z′ :

transverse coordinate with origin at center of channel

α :

thermal diffusivity

α n, βn, εn, γn :

eigenvalues

γ 1, γ 2 :

temperature coefficients for density-temperature relationship

θ :

dimensionless temperature disturbance, θ′/ΔT

θ b, θ 0 :

dimensionless temperature and uniform entrance temperature, (T bT m)/(T 2T m) and (T 0T m)/(T 2T m)

λ 1, λ 2 :

thermal condition parameters defined below eq. (13)

ν :

kinematic viscosity

ρ, ρ max :

density and maximum density at 4°C

φ, φ u, φ θ :

(φ θ −1), dimensionless basic velocity and temperature profiles, (1/2)u b=3(z−z 2), (1−θ b)/2

ΔT :

(T 1T 2)

o:

perturbation quantity

o:

amplitude of disturbance quantity

*:

transformed perturbation variable or critical value

b:

basic flow quantity in unperturbed state

1, 2:

upstream and downstream regions

f:

fully developed value

References

  1. Veronis, G., Astrophysical J. 137 (1963) 641.

    Article  MATH  ADS  Google Scholar 

  2. Debler, W. R., J. Fluid Mech. 24 (1966) 165.

    Article  MathSciNet  ADS  Google Scholar 

  3. Tien, C., A.I.Ch.E.J. 14 (1968) 652.

    Google Scholar 

  4. Sun, Z. S., C. Tien, and Y. C. Yen, A.I.Ch.E.J. 15 (1969) 910.

    Google Scholar 

  5. Sun, Z. S., C. Tien, and Y. C. Yen, Heat Transfer, Vol. 4, NC 2.11, Elsevier Publishing Co., Amsterdam, 1970.

    Google Scholar 

  6. Hwang, G. J. and K. C. Cheng, J. Heat Transfer 95C (1973) 72.

    Google Scholar 

  7. Kamotani, Y. and S. Ostrach, J. Heat Transfer 98C (1976) 62.

    Google Scholar 

  8. Hsu, C. J., A.I.Ch.E.J. 17 (1971) 732.

    Google Scholar 

  9. Hatton, A. P. and J. S. Turton, Int. J. Heat Mass Transfer 5 (1962) 673.

    Article  Google Scholar 

  10. Wu, R. S. and K. C. Cheng, Can. J. Chem. Engng. 54 (1976) 526.

    Article  Google Scholar 

  11. Wu, R. S., Ph.D. Thesis, Dept. of Mech. Eng., Univ. of Alberta, Edmonton, Canada 1976.

    Google Scholar 

  12. Collatz, L., The Numerical Treatment of Differential Equations, 3rd Ed., Springer-Verlag, Berlin, 1960, p. 69.

    Google Scholar 

  13. Thomas, L. H., Physical Review 91 (1953) 780.

    Article  MATH  ADS  Google Scholar 

  14. Dorsey, N. E., Properties of Ordinary Water-Substance, Hafner Publishing Co., New York, 1968, p. 200.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, K.C., Wu, RS. Maximum density effects on convective instability of horizontal plane poiseuille flows in the thermal entrance region. Appl. Sci. Res. 33, 405–425 (1977). https://doi.org/10.1007/BF00411822

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411822

Keywords

Navigation