Skip to main content
Log in

Linear shear flow past a porous particle

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Linear shear flow past a porous spherical particle is studied using a generalized boundary condition proposed by Jones. The torque on a porous sphere rotating in a quiescent fluid is calculated. Streamlines patterns are illustrated for the case of a particle freely suspended in a simple shear flow. These patterns are shown to differ significantly from those associated with an impermeable rigid sphere. Finally, an expression for the effective viscosity of a dilute suspension of porous spherical particles is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B :

dimensionless flow parameter

a :

radius of the porous sphere

C, E, F:

constants of integration

d :

shear strength

d :

constant rate of deformation of ambient field

e :

rate of strain tensor

f, g :

functions of distance

k :

permeability of the porous medium

n :

unit normal vector

p :

pressure

p :

unit vector

Q :

coefficient of spherical harmonic

q :

filter velocity within the porous medium

r :

polar spherical coordinate

S p :

surface of porous particle

S, T, T*:

coefficients of spherical harmonics

T :

torque exerted on the particle

u :

fluid velocity vector

x :

cartesian coordinates

α :

dimensionless constant

θ, φ :

polar spherical coordinates

λ :

dimensionless flow parameter

μ :

viscosity of the fluid

σ :

stress tensor

Ω :

rotational velocity of the particle

ω :

rotational velocity of the ambient field.

References

  1. Jones, I. P., Proc. Camb. Phil. Soc. 73 (1973) 231.

    Google Scholar 

  2. Beavers, G. S. and D. D. Joseph, J. Fluid Mech. 30 (1967) 197.

    Google Scholar 

  3. Beavers, G. S., E. M. Sparrow and R. A. Magnuson, J. Basic Engng., Trans. A.S.M.E. Series D, 92 (1970) 843.

    Google Scholar 

  4. Saffman, P. G., Stud. Appl. Math. 50 (1971) 93.

    Google Scholar 

  5. Nir, A., H. F. Weinberger and A. Acrivos, J. Fluid Mech. 68 (1975) 739.

    Google Scholar 

  6. Cox, R. G., I. Y. Z. Zia and S. G. Mason, J. Coll. Int. Sci. 27 (1968) 7.

    Google Scholar 

  7. Cos, R. G., J. Fluid Mech. 37 (1969) 601.

    Google Scholar 

  8. Fraenkel, N. A. and A. Acrivos, J. Fluid Mech. 44 (1970) 65.

    Google Scholar 

  9. Lamb, H., Hydrodynamics, Dover, Publications, N.Y., 1945.

    Google Scholar 

  10. Batchelor, G. K. and J. T. Green, J. Fluid Mech. 56 (1972) 375.

    Google Scholar 

  11. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge, University Press, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nir, A. Linear shear flow past a porous particle. Appl. Sci. Res. 32, 313–325 (1976). https://doi.org/10.1007/BF00411782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411782

Keywords

Navigation