Skip to main content
Log in

On longitudinal impact I

Fundamental cases of one-dimensional elastic impact, theories and experiments

  • Published:
Applied Scientific Research, Section A Aims and scope Submit manuscript

Summary

Central longitudinal impact of slender bodies has a number of important technical applications. Theoretical treatment of these cases has, however, often been unduly scarce or crude, probably because available methods suitable for engineering applications have not been sufficiently well known. This is the first one of a series of papers intended to fill this gap by presenting theoretical solutions for a number of cases of various types, including hammers and bars of various fundamental forms, impact with elastic and plastic deformation and restraint by solid friction, and by suggesting some applications. This paper reviews known analytical, graphical and numerical methods for one-dimensional treatment of longitudinal impact and introduces a slightly modified version of the “graphodynamical” method which will be used in the following. Stress pulse measurements made with wire strain gauges on a bar impacted by cylindrical hammers of various diameters and materials are presented and found to agree reasonably well with corresponding theoretical pulse forms. Formulae and diagrams are given for the influence of the ratio of areas and material constants of hammer and bar on force, stress, energy transmission and other important quantities of the type of impact mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pöschl, Th., Der Stoss, Handbuch der Physik, Band VI, p. 501, Berlin 1928.

  2. Chellis, R. D., Pile-driving Handbook, p. 183, New York 1944.

  3. De Saint-Venant, B., Journal de Mathématiques, 2e série XII (1867) 237.

    Google Scholar 

  4. De Saint-Venant, B., Comptes Rendus 66 (1868) 650.

    Google Scholar 

  5. De Saint-Venant, B., and Flamant, postcript to their translation of Clebsch, Théorie de l'élasticité des corps solides, Paris 1883.

  6. Donnell, L. H., Trans Amer. Soc. Mech. Engrs, 52 (1930) 153.

    Google Scholar 

  7. See extensive bibliographies in 1) 16) —— and Davies, R. M., Appl. Mech. Rev. 6, (1953) 1.

    Google Scholar 

  8. Dahl, Hjalmar O., Jernkontorets Annaler 116 (1932) 205, 403.

    Google Scholar 

  9. Thornton, L., Engineering 169 1950) 689.

    Google Scholar 

  10. Glanville, W. H., Grime, Fox and Davies, An investigation of the stresses in reinforced concrete piles during driving, DSIR Building Research Techn. Paper no. 20, London 1938.

  11. Gloeckner, H., Bergb.-Wiss. 3 (1956) 134.

    Google Scholar 

  12. Krainer, E., Maschb. und Wärmewirtsch. 9 (1954) 282, 301.

    Google Scholar 

  13. Schweiger, H. und H. Dietz, Ann Phys., 6. Folge 16 (1955) 306.

    Google Scholar 

  14. Charles, R. J. and P. L. de Bruyn, Trans. Amer. Inst. Min. Metalls Engrs 205 (1956) 47.

    Google Scholar 

  15. De Juhasz, K. J., J. Appl. Mech. 9 (1942) A 122.

    Google Scholar 

  16. De Juhasz, K. J., J. Franklin Inst. 247 (1949) 15, 113.

    Google Scholar 

  17. De Juhasz, K. J., J. Franklin Inst. 226 (1938) 505, 631, 647.

    Google Scholar 

  18. Jenny, E., Berechnungen und Modellversuche über Druckwellen grosser Amplituden in Auspuff-Leitungen, Diss. ETH Zürich, Basel 1949.

    Google Scholar 

  19. Chen, Y., Druckwellen-Spülung bei Zweitaktmotoren, Diss. Zürich 1953.

    Google Scholar 

  20. Fischer, H. C., Appl. Sci. Res. A4 (1954) 317.

    Google Scholar 

  21. Davies, R. M., Phil. Trans. Roy. Soc. A240 (1948) 375.

    Google Scholar 

  22. Ripperger, E. A., Proc. 1st. Midwestern Conf. Solid Mech. 1953, p. 29.

  23. Miklowitz, J., J. Appl. Mech. 79 (1957) 231, 240.

    Google Scholar 

  24. Skalak, R., J. Appl. Mech, 79 (1957) 59 and discussion by Miklowitz, J., p. 636.

    Google Scholar 

  25. Smith, E. A., Trans. Amer. Soc. Mech. Engrs 77 (1955) 963.

    Google Scholar 

  26. Smith, E. A., The wave equation applied to pile driving, progress report from the Raymond Concrete Pile Co., New York 1957.

  27. Weibull, W., De dynamiska egenskaperna hos spiralfjädrar (The dynamic properties of helical springs), IVA Handl. 70, Stockholm 1927.

  28. Fanning, R. and W. V. Bassett., J. Appl. Mech. 7 (1940) A 24.

    Google Scholar 

  29. Krafft, J. M., Proc. S.E.S.A. XII:2 (1955) 173.

    Google Scholar 

  30. Fink, K., Grundlagen und Anwendungen des Dehnungsmesstreifens, p. 166, Düsseldorf 1952.

  31. Petersson, S., Investigation of stress waves in cylindrical steel bars, Trans. Roy. Inst. Techonol. Stockholm Nr. 62, Stockholm 1953.

  32. Föppl, L., J. Appl. Mech. 16 (1949) 173.

    Google Scholar 

  33. Frocht, M. M. and P. D. Flynn, J. Appl. Mech, 78 (1956) 116 and discussion by A. J. Durelli p. 482.

    Google Scholar 

  34. Cunningham, D. M. and W. Goldsmith, J. Appl. Mech. 23 (1956) 607, 612.

    Google Scholar 

  35. Davidson, T. and J. H. Meier, Proc. S.E.S.A. IV:1 (1946) 88.

    Google Scholar 

  36. Springfeldt, B., Tekn. Tidskr. 87 (1957) 745.

    Google Scholar 

  37. Ripperger, E. A., Proc. S.E.S.A. X:1 (1952) 209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, H.C. On longitudinal impact I. Appl. sci. Res. 8, 105–139 (1959). https://doi.org/10.1007/BF00411743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411743

Keywords

Navigation