Skip to main content
Log in

Heat transfer in a gas borne suspension of fine particles in turbulent duct flow

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Heat transfer in turbulent duct flow of a suspension of fine particles is examined. The flow is fully developed but the temperature profiles due to heat transfer are not. Two coupled similar equations define the system and illustrate the limitations which arise through describing heat transfer between the phases in terms of a particle heat transfer coefficient. In this case, however, the equations may be reduced to two equations of the Sturm-Liouville type. The solutions of these have eigenfunctions which are closely related and they share a common series of eigenvalues. The latter conclusions are expected to apply more readily to a transport reactor of large bore which circulates fine noncohesive particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A P :

surface area of particle

C :

specific heat

D :

pipe diameter

d :

particle diameter

f f, f s :

Ū f(η)/Ū avge, Ū s(η)/Ū avge

g f :

total diffusivity function for gas, 1+ε H, f Pr/ν

g s :

eddy diffusivity function for solids, ε H, s Pr/ν

h p :

particle heat transfer coefficient

k :

thermal conductivity

m p :

mass of particle

Nu s :

pipe wall Nusselt number for flow with solids

Nu 0 :

” ” ” ” ” ” of air alone

Pr :

Prandtl number, μC f/k f

Re :

Reynolds number, Ū avge D/ν

n :

particle concentration, \(\bar \rho _{{\text{ds}}} /\pi d^3 \rho _{\text{p}}\)

q :

heat flux at wall

R f, n , R s, n :

eigenfunctions of gas and solid phase

r :

radial position in pipe

r*:

distance from centre of particle

T :

temperature

t :

time

U :

axial velocity down pipe

Ū avge :

\(\frac{8}{{D^2 }}\int\limits_0^{\tfrac{1}{2}D} {\bar U_{\text{f}} r{\text{ d}}r}\)

W s, W g :

solids and gas flow rates in transfer line

x :

distance down pipe from point of heat addition

α, β :

constants

β 3 :

\(\frac{{3_{\rho {\text{f}}} C_{\text{f}} D^2 h_{\text{p}} }}{{_{\rho {\text{p}}} C_{\text{s}} k_{\text{f}} d}}\)

β 4 :

\(\frac{{3_{\bar \rho {\text{ds}}} h_{\text{p}} D^2 }}{{_{\rho {\text{p}}} dk_{\text{f}} }}\)

ε H :

eddy diffusivity of heat

ε H, f(O):

fluid eddy diffusivity of heat in the absence of solids

θ f, θ s :

gas and solid phase time averaged temperatures rendered suitably dimensionless

either:

\(\theta = {{(\bar T - T_{\text{w}} )} \mathord{\left/ {\vphantom {{(\bar T - T_{\text{w}} )} {(T_{\text{o}} - T_{\text{w}} )}}} \right. \kern-\nulldelimiterspace} {(T_{\text{o}} - T_{\text{w}} )}}\) for uniform wall temperature conditions

or:

\(\theta = {{2k_{\text{f}} (\bar T - T_{\text{o}} )} \mathord{\left/ {\vphantom {{2k_{\text{f}} (\bar T - T_{\text{o}} )} {qD}}} \right. \kern-\nulldelimiterspace} {qD}}\) for uniform heat flux conditions at the wall

τ 2 n :

eigenvalue

η :

2r/D

ρ f :

gas density

ρ ds :

dispersed solids density

ρ *ds :

dispersed solids density in unit size range of particles

ρ p :

density of material of particles

ξ :

2x/D Re Pr

ν :

kinematic viscosity

μ :

viscosity

f:

gaseous phase

o:

at inlet to heated section

p:

particle

s:

solid phase

w:

wall

overscore:

refers to time average, e.g. \(\bar \psi = \mathop {\lim }\limits_{T \to \infty } \frac{1}{T}\int\limits_0^T \psi {\text{ d}}t\)

dash:

refers to a fluctuation from the mean value, e.g. \(\psi (t) = \bar \psi + \psi '(t)\)

References

  1. Yannopoulos, J. C., N. J. Themelis, and W. H. Gauvin, Canad. J. Chem. Eng. 42 (1964) 231.

    Google Scholar 

  2. Sparrow, C. M., T. M. Hallman, and R. Siegel, Appl. Sci. Res. A 7 (1957) 37.

    Google Scholar 

  3. Sleicher, C. A. and M. Tribus, Trans. ASME 79 (1957) 789.

    Google Scholar 

  4. Soo, S. L., G. J. Trezek, R. C. Dimick and G. F. Hohenstreiter, Ind. Eng. Chem. Fund. 3 (1964) 98.

    Google Scholar 

  5. Hinze, J. O., Appl. Sci. Res. A 11 (1962) 33.

    Google Scholar 

  6. Julian, F. M. and A. E. Dukler, AIChE J. 11 (1965) 853.

    Google Scholar 

  7. Boothroyd, R. G., Trans. Inst. Chem. Eng. 44 (1966) 306.

    Google Scholar 

  8. Boothroyd, R. G., Trans. Inst. Chem. Eng. 45 (1967) 297.

    Google Scholar 

  9. Tien, C. L., ASME J. Heat Transf. 83 (1961) 183.

    Google Scholar 

  10. Depew, C. A. and L. Farbar, ASME J. Heat Transf. 85 (1963) 164.

    Google Scholar 

  11. Nosov, V. S. and N. I. Syromyatnikov, Soviet Physics Doklady 10 (1966) 672.

    Google Scholar 

  12. Babcock and Wilcox Co., rep. B. A. W. 1159, 1181, 1194, 1201, and 1207, New York 1959.

  13. Hawes, R. I., E. Holland, G. T. Kirby, and P. R. Waller, rep. AEEW - R244/1964, Atomic Energy Establishment, Winfrith (U.K.) 1964.

  14. Garrett, T., Heat transfer characteristics of dilute phase solids/air suspensions in turbulent pipe flow, Ph. D. thesis, University of Cambridge, Cambridge (U.K.) 1964.

    Google Scholar 

  15. Farbar, L. and M. J. Morely, Ind. Eng. Chem. 49 (1957) 1143.

    Google Scholar 

  16. Jepson, G., A. Poll, and W. Smith, Trans. Inst. Chem. Eng. 41 (1963) 207.

    Google Scholar 

  17. Quan, V. and C. L. Tien, ASME Paper 62 - HT - 15, ASME, New York 1962.

    Google Scholar 

  18. Brötz, W., J. W. Hiby, and J. W. Müller, Chemie Ing. Tech. 10 (1958) 138.

    Google Scholar 

  19. Price, P. H., Brit. J. Appl. Phys. 10 (1959) 135.

    Google Scholar 

  20. Van Zoonen, D., 3rd Europ. Cong. Chem. Eng. A54, Inst. Chem. Eng., London (U.K.) 1962.

  21. Churchill, R. V., Modern Operational Mathematics in Engineering, McGraw-Hill, New York 1944.

    Google Scholar 

  22. Hinze, J. O., Turbulence: an Introduction to its Mechanism and Theory, McGraw-Hill, New York 1959.

    Google Scholar 

  23. Schlichting, H., Boundary Layer Theory, 4th edn., McGraw-Hill, New York 1960.

    Google Scholar 

  24. Boothroyd, R. G., J. Sci. Instr. 44 (1967) 249.

    Google Scholar 

  25. Themelis, N. J. and W. H. Gauvin, Canad. J. Chem. Eng. 40 (1962) 157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boothroyd, R.G. Heat transfer in a gas borne suspension of fine particles in turbulent duct flow. Appl. sci. Res. 21, 98–112 (1969). https://doi.org/10.1007/BF00411600

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411600

Keywords

Navigation